

Optimization Overview

Presented by Boeing

The information being forwarded to operators and regulatory authorities by or with this transmittal is in support of the continued safety and airworthiness of Boeing-manufactured airplanes, considered proprietary to and a trade secret of The Boeing Company, and is provided strictly on a confidential basis. The provided information, including any copies or derivative works which the operators and regulatory authorities may be required to make in the course of its review, must be destroyed (permanently removed from computing systems and all storage media) immediately upon completion of the required use by the operators and regulatory authorities. Operators and regulatory authorities are not authorized to retain any portion of the provided information

Regulatory Background

International Maintenance Review Board Issue Paper 44 (IP-44)

- Purpose: To standardize scheduled maintenance program evolution/ optimization across all OEMs.
- Issued by International MRB Policy Board (IMRBPB)... (a team of regulatory authorities: FAA, EASA, TC,...)
- Mandated to all OEM ISC/MRB process
- Issued: April 25, 2008
- Effective: April 2009

IP44 Guidelines Overview

1.0 Introduction

- This guidance shall be applied for evolution / optimization activities ... after April 2009.
- The OEM/TCH Evolution/Optimization process does not assume any operation control over an operator's maintenance program

3.0 Comprehensive data

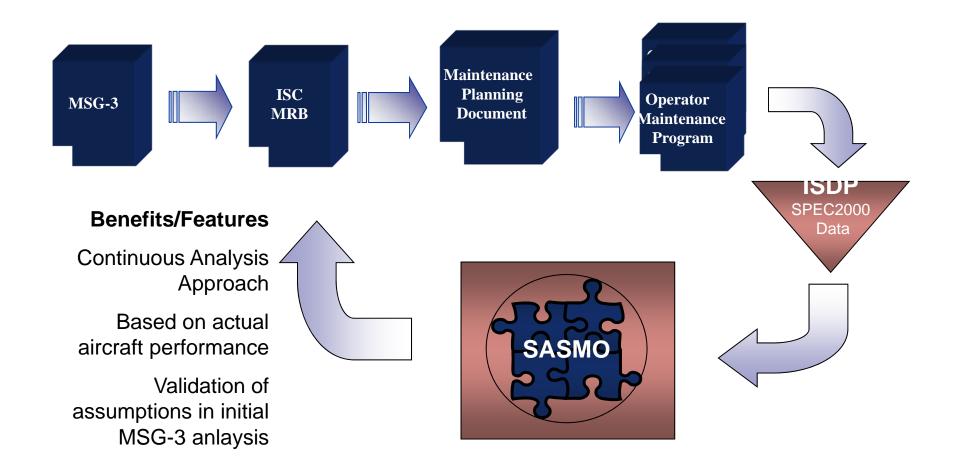
 In-service data both scheduled and unscheduled maintenance findings related to the intent of the MSG-3 task should be evaluated.

4.3 Data Format

• The OEM/TCH shall utilize in-service data in a standardized format (ATA SPEC2000 Chapter 11 format or equivalent)...

7.2 Statistical Analysis

- OEM/TCH shall develop and implement a statistical analysis system to provide justification that a 95% level of confidence has been achieved ...
- Statistical analysis should be supported by engineering judgment.


SASMO Development

- Boeing Research and Technology team
 - Developed Advanced Predictive modeling techniques (statistical analysis)
 - Extensive Peer Review by experts in statistics and reliability analysis
- Boeing Maintenance Engineering
 - Developed Task Analysis Methodology
 - Developed SASMO Program Interface
 - Regulatory and ISC engagement
- Boeing CAS IT
 - Infrastructure and database design
 - SASMO Integration with other Boeing resources
- Industry Participation
 - Pilot program with 737NG operators
 - Industry Input by ISC members

Regulatory Engagement

- Concept review with FAA AFS-302 and AEG
- Accepted as a solution for Task Evolution Optimization by multiple regulatory (meeting IP-44 Guidelines)
- Methodology and Procedure described in Policy and Procedure Handbooks (PPH) for multiple Boeing models


SASMO Analysis Process

Components of SASMO Analysis

SASMO Analysis is composed of three major components

Boeing MPE Analysis

Boeing Design Community

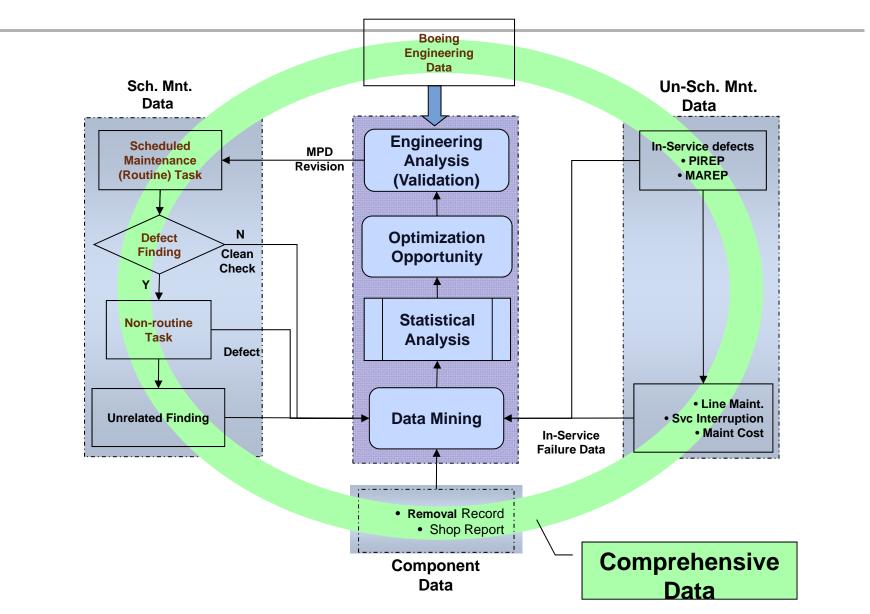
Operator In-Service Data

Operator In-Service Data

Data Collection

- Operator In-Service data is the most important component of Optimization/Evolution using SASMO
 - SASMO requires data to be provided in a ATA Spec2000, Chapter 11 format (or equivalent)
 - Industry developed standard for data transmittal/collection
 - Specification contains 243 separate data elements
 - SASMO requires 8 of the fields to be used for analysis (S/N, Date, Finding, etc.) – Remainder is optional

Importing Data in SASMO


• Operator Data comes into SASMO via two methods:

- 1. Operator data feed via ISDP (preferred method)
 - Requires operator participation in ISDP (In-Service Data Program)
 - Scheduled & Unscheduled maintenance data
 - Continuous data stream
- 2. Manual Entry using Standard excel format
 - Temporary approach until operators convert to automated Spec2000 feed
 - On-demand data feed (based on ISC)
 - Standard electronic format
 - Conversion to Pseudo-SPEC2000 format by Boeing MPE (Sch Maint. Data only)

Boeing MPE Analysis

Boeing MPE Analysis

Analysis Overview

Part Mapping

- The part mapping process is what determines what data is used in the SASMO Analysis (pre-analysis)
- The MSI/SSI/LHSI described in the analysis will be used for part mapping

Task Type	Part Mapping Definition
Systems	Maintenance Significant Item (MSI) Failure Cause
Structures	Structurally Significant Item (SSI)
Zonal	Precluded SSI/MSI Inspection Requirements
L/HIRF	Lightning/High Intensity Radiated Field Significant Item (LHSI)

Data Mining

For MSI/SSI/LHSI maintenance records are text mined from Operator data

 Scheduled Maintenance Structured Data Scheduled Mx Task Performance 	 <i>Text Analytics</i> Performance of other scheduled maintenance tasks
 Unscheduled Maintenance Structured Data Component Removals Delays and Cancellation 	 <i>Text Analytics</i> Component Removals Logbooks PIREP/MIREP Delay's and Cancellations Shop Reports

Engineer Review

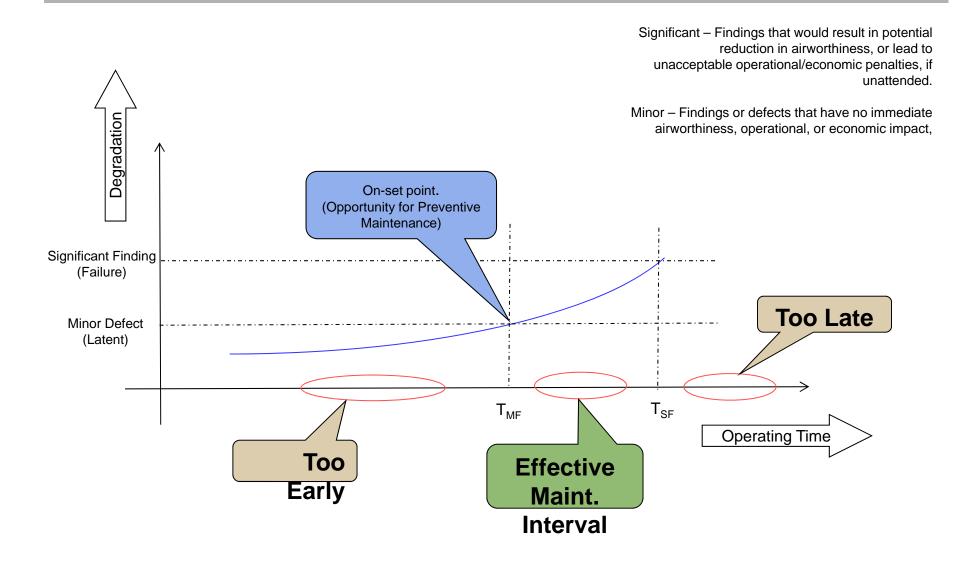
MPE Engineer reviews all findings

- Determine applicability and severity of finding
- Determine specific component/part involved (if possible)

Each record is categorized in one of four ways

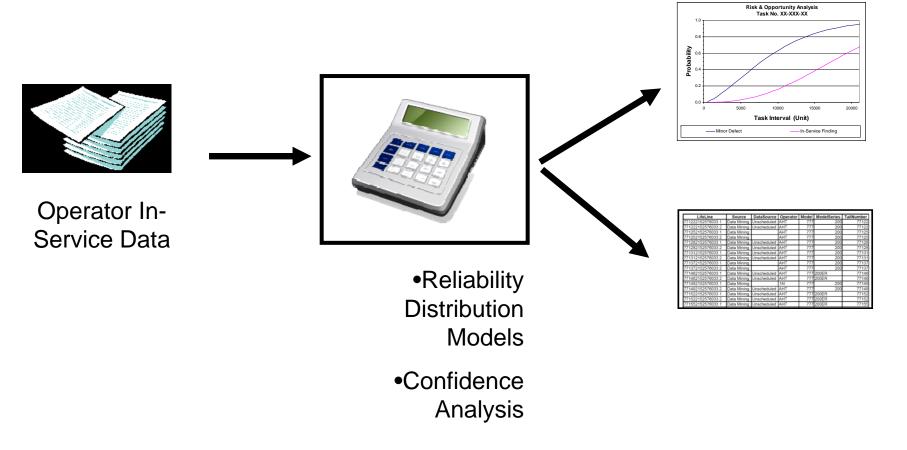
- Not Applicable
- Minor
- Significant
- Non-Failure

Examples Risk / Opportunity


Structures

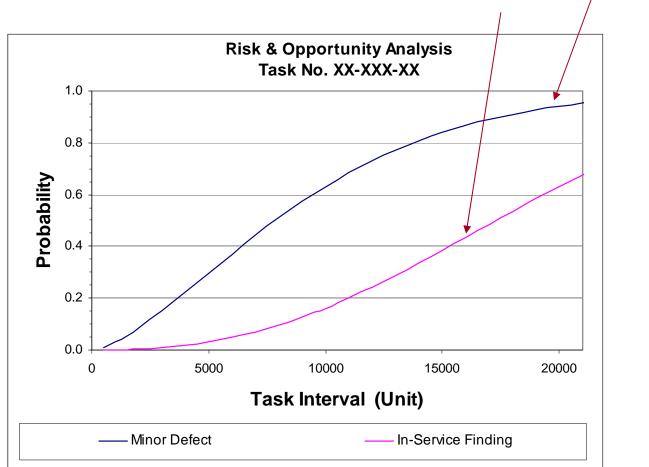
Opportunity	Risk
Latent defects, structural dents/scratches (accidental damage), level 1 corrosion	Functional failures, major repairs, level 2 corrosion or any finding which has a significant economic / airworthiness impact on the operator.

Zonal


Opportunity	Risk
Structural dents/scratches, level	Visibly damaged of failed wiring (EZAP
1 corrosion, damage to support	only), SSI damaged exceeding SRM
structure such as brackets, dust	limits, corrosion level 2, precluded
build up	system item failure.

SASMO Approach

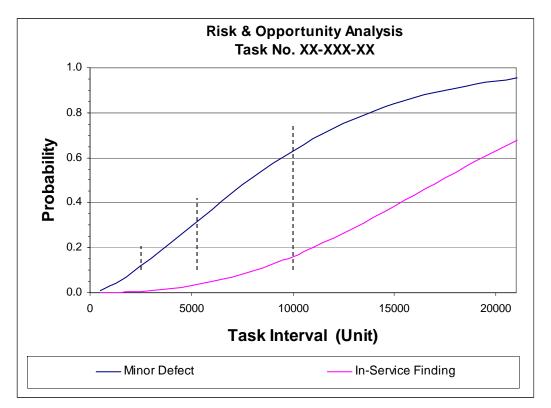
Lifetime Measurement


 SASMO uses a series of algorithms and statistical methodologies to determine probability of T_{MF} and T_{SF} for each task

Statistical Analysis

Risk Analysis Chart

• Probability of capturing defects during schedule maintenance. (Opportunity)


• Probability of significant finding or in-service failure (Risk)

Interval Selection

Typically, an interval is a tradeoff between the opportunity and risk

As Opportunity increases, Risk increase (though not at the same rate)
 As Risk decreases, opportunity decreases

• Proper interval selection is a balance between these factors

Interval	Opportunity	Risk
2500	10%	1%
5000	31%	4%
10000	68%	15%

SASMO Statistical Analysis

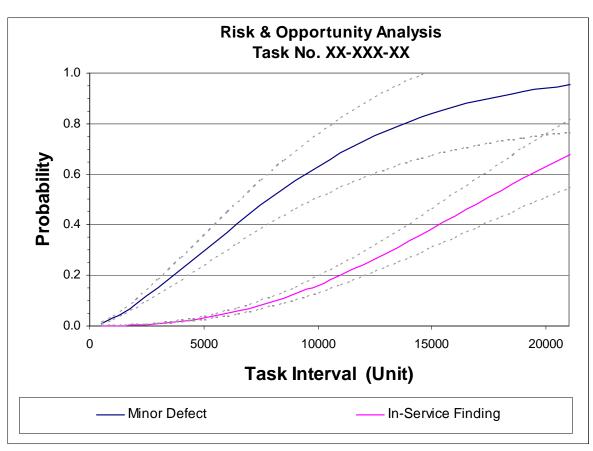
- SASMO purpose is to provide statistical analysis to aid in selection of an appropriate and effective maintenance interval.
- SASMO does not select an interval (There is no "SASMO number")

Interval Selection

- Interval selected is performed using information in the risk analysis chart. Interval will be selected which:
 - minimizes the likelihood of "significant findings" such as functional failure, major repairs, level 2 corrosion or any finding which has a significant economic or airworthiness impact on the operator.
 - -AND-
 - allows for capturing and rectification of "minor findings" such as latent defects, structural dents/scratches, level 1 corrosion, etc.
- Interval selected will be corroborated and supported by Boeing Design Engineering.

Interval Selection

The following guidelines are used as a starting point in determining an interval selection. The probability of significant findings is the primary factor considered.

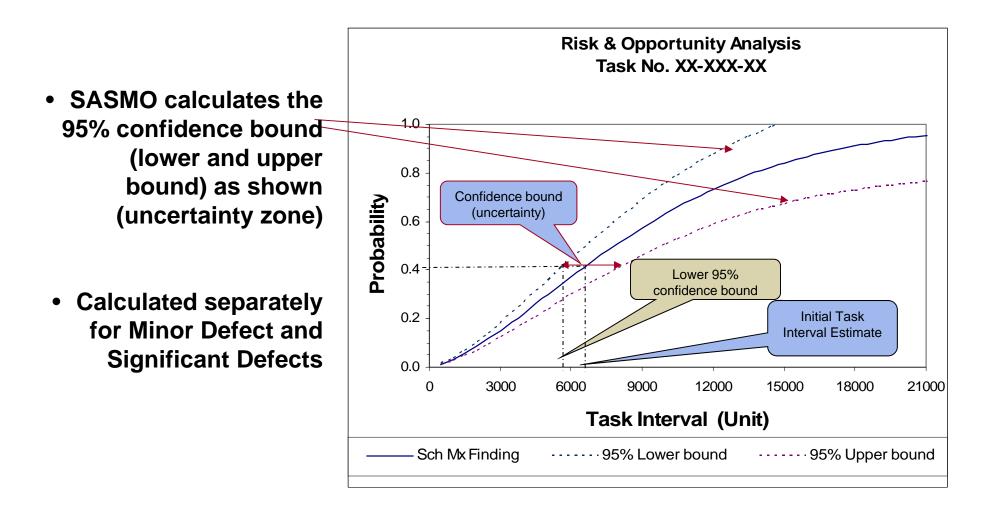

Task Type (FEC)	Standard Risk Profile (Opportunity / Risk)
Safety (5, 8, S)	40% / 10%
Operational (6)	50% / 20%
Economic (7, 9)	60% / 30%

If the Minor Finding probability is high, this represents a long exposure time to latent defects, which depending on the system being analyzed, can lead to increased repair costs and potential for in-service issues.

Confidence Level Analysis

Confidence level is a measure of uncertainty. The level of uncertainty (a.k.a. confidence bound) depends on the <u>sample size</u> and <u>variability</u> of the data.

- SASMO calculates the 95% confidence bound (lower and upper bound) as shown (uncertainty zone)
- Calculated separately for Minor Defect and Significant Defects



95% Confidence

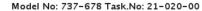
• IP-44 Requirement:

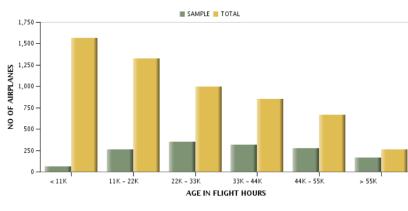
- OEM/TCH shall develop and implement a statistical analysis system to provide justification that a 95% level of confidence has been achieved for the Evolution /Optimization exercise on a task by task basis.
- "Confidence level refers to the likelihood that the overall fleet performance lies within the range specified by the sample fleet performance."
- "For example, a 95% confidence level implies that the probability that the fleet parameter lies within the confidence interval is 95%."

Confidence Level Analysis

Investigating Factors Affecting the Interval

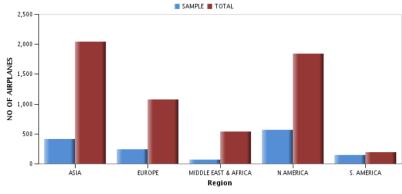
- SASMO produces charts with regards to several factors that might influence the optimum interval:
 - Aircraft age
 - Operating Region/Environment
 - Fleet distribution of the data collected


Final Recommendation


MPE Engineers analyze each task and develop a recommendation taking into account:

- Review of In-Service Data
- Verifies appropriate sample of Regions/Operators
- Statistical Analysis Output
- MSG-3 Analysis
- Review of Service Documents (SB, AD, FTD, etc)

Sample SASMO Summary Report

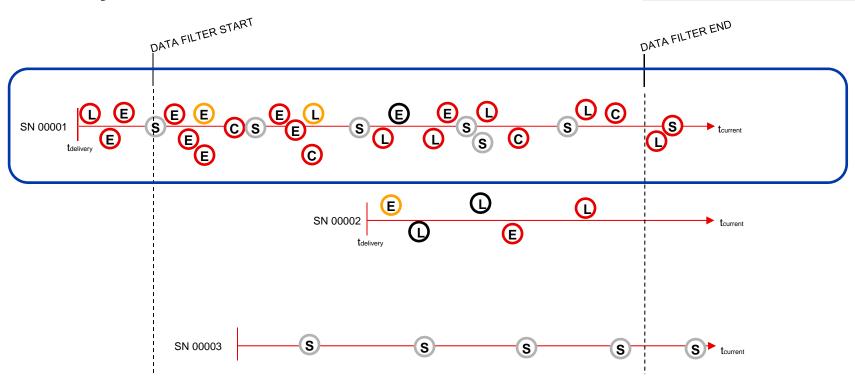

AGE SAMPLE SIZE

REGION SAMPLE SIZE

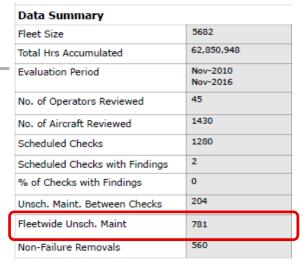
Model No: 737-678 Task.No: 21-020-00

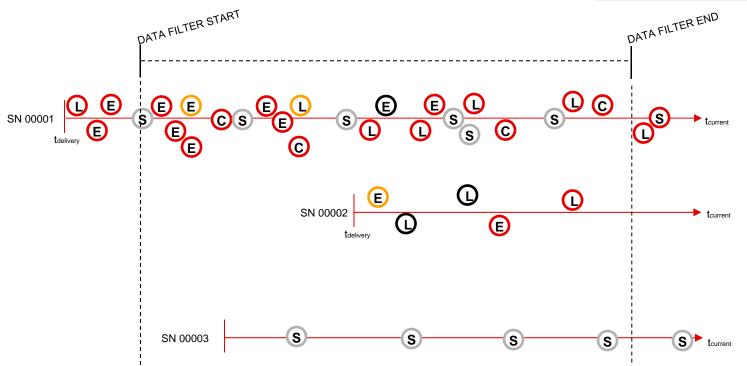
Data Summary		
Fleet Size	5682	Summary of Findings
Total Hrs Accumulated	62,850,948	SERVICE DOCUMENTS:
Evaluation Period	Nov-2010 Nov-2016	No service document impacted this analysis. SCHEDULED MAINTENANCE:
No. of Operators Reviewed	45	The majority of the scheduled maintenance are clean check. The only scheduled maintenance that was not a clean check is related to E/E cooling exhaust fan. (E/E cooling exhaust fan and E/E cooling supply fan shares the
No. of Aircraft Reviewed	1430	same P/N)
Scheduled Checks	1280	UNSCHEDULED MAINTENANCE: The majority failure found in unscheduled maintenance are fan failure due to
Scheduled Checks with Findings	2	Ine majority railure round in unscheduled maintenance are ran railure due to low flow, overheat, and inop/unsatisfied. The fan failures are mostly caught by low flow indicating lights and low flow warning horns.
% of Checks with Findings	0	
Unsch. Maint. Between Checks	204	Minor findings are bad relays, clogged filters, and troubleshooting.
Fleetwide Unsch. Maint	781	Non-failure/not applicable findings consists of primary/alternative exhaust fan failure and part robs/swaps.
Non-Failure Removals	560	

	Current Interval		Significant Quantile: 30 Minor Quantile: 60		Recommended Interval	
Analysis Results			Statistical Interval (at 95% Confidence Level)			
	Threshold	Repeat	Threshold	Repeat	Threshold	Repeat
Interval	8000 FH	8000 FH	19733 FH	19733 FH	16000 FH	16000 FH


Confidence Level Analysis

Unsch. Maint. Between Checks


Data Summary	
Fleet Size	5682
Total Hrs Accumulated	62,850,948
Evaluation Period	Nov-2010 Nov-2016
No. of Operators Reviewed	45
No. of Aircraft Reviewed	1430
Scheduled Checks	1280
Scheduled Checks with Findings	2
% of Checks with Findings	0
Unsch. Maint. Between Checks	204
Fleetwide Unsch. Maint	781
Non-Failure Removals	560


 The total number of unique unscheduled maintenance findings used in the analysis for airplanes which have relevant schedule maintenance data used in the analysis.

Fleetwide Unsch. Maint.

 The total number of all unique unscheduled maintenance within the analysis evaluation period used in the analysis

Design Community Review

Design Community Review

Boeing Engineering Community Review

- Each task recommendation is reviewed by the Boeing design community
- This community review consists of
 - If new recommendation is within certification requirements such as System Safety assessment (SSA), Supplement Inspection Program, FAR 26
 - Address any "emerging" fleet issues which may not be present in the fleet data used in the statistical analysis
 - Overall concurrence and support of the proposal

- Interval recommendation is based on statistical analysis and evaluation of in-service data
- Proposal is Reviewed and Accepted by ISC
- MRB Chairman approves the document before publishing

