HNAT 737 技术问题说明

提示单编号	撰写	改编	批准/日期
TIP737-2021-36-003	李政卫	曾且	张大伟/2021.1.28

标题

引气排故的辅助手段

一、适用性

737NG

二、背景描述

737NG 引气系统因其部件的不可靠性,在日常故障处置中占据了较多的位置,这些年随实时监控的扩展,尤其是在 2018 年做了较大逻辑调整后,故障趋于稳定,冷路和部分热路的趋势性故障得到了提前捕获,跳开了故障得到了较好的缓解。但对于 BAR、0311 线束、信号管和部分 PRSOV的故障尚无有效手段监控。从排故而言,能拿到跳开前的引气温度和压力数据,加上飞行高度和推力情况,基本上引气故障排故的精准性能得到相对好的提升。没有的话,就需要从冷路和热路的配合,结合报文的温度压力情况。进行对比分析,这一判断在报文标准操作中有相关说明。

三、解释说明

辅助手段的主要讲机上读取和译码结合两种。

一), 机上读取温度

1, 方法

737NG 机队的 DFDAU 两种构型,一种为 HONEYWELL,另一种为 TELEDYNE,约三份之二是霍尼韦尔构型的 DFDAU,下图为 HONEYWELL 的界面,可以直接去读相关参数:

- (1) 按压 MCDU 上的 MENU 键进入 MCDU 主菜单
- (2) 在 MCDU 主菜单下,按压 ACMS 左行选择键进入 ACMS 主菜单。
- (3) 在 ACMS 菜单下,按压 ALPHA 右行选择键进入 ACMS:ALPHA CALL-UP CTRL 页。
- (4) 在 ACMS:ALPHA CALL-UP CTRL 页面,按压 ALPHA MENU DISPLAY 右行选择键进入 ALPHA CALL-UP 页面。
- (5) 在 ALPHA CALL-UP 页面下,将"N1"输入便笺行,然后然后按下第一行"*□□□□"左行选择键,这时就可以看到左右发的 N1 值。同理,将"DP"输入便笺行,然后然后按下第二行"*□□□□"左行选择键,这时就可以看到左右发的引气压力值。将"POT"输入便笺行,然后然后按下第三行"*□□□□"左行选择键,这时就可以看到左右发的预冷器出口温度。

2,案例

有了实时监控,可以更详细的知道不同发动机转速下的引气温度和压力,同时还可以通过开关空调,开关发动机进气道防冰,大翼防冰(注意时间限制,不能在地面长时间开大翼防冰,最好不要超过30s),脱开PCCV信号管、锁高压级活门试车等方式改变引气系统的工作状态,进行故障隔离。

以下为该机的监控报文,可以看出双发高功率情况下引气压力正常,左发温度高。通过系统原理分析可以知道,在 390F 以后 PCCV 开,在 450F 以后 450 传感器放气减少 PRSOV 的开度。如果此时压力还没有减少的话,表明要不就是 PRSOV 存在卡滞,无法全关;要不就是 450 未放气;或者是指示问题导致的漂移。(指示漂移在自行改装的飞机上确有出现,原装则很少发现)

Fault parameters The original message										
Parameter name	AC	FROM	то	GMT	DBID	FM				
Value	B-0	ZJSY	ZHCC	0336	CL	Y81301				
Parameter name	N1.1	N1.2	DP.1	DP.2	POT.1	POT.2	BSW			
Value	097	097	041	043	473	451	11			

为了验证是否为指示问题,做了试车和温度压力读取,相关数据如下:

左发 N1	右发 N1	左发引气	右发引气	左发引气	右发 引气	备注
		压力	压力	温度	温度	
20	20	19	19	274	263	
25	25	30	30	280	270	
30	30	35	35	280	270	
35	35	30	30	282	272	
40	40	30	30	287	284	
45	45	31	31	291	302	
50	50	34	34	296	332	
55	55	40	41	303	355	
60	60	48	49	321	364	
65	65	49	50	337	366	
68	68	48	49	355	369	
75	68	46	48	392	379	
80	68	46	47	406	389	

85	68	45	46	414	400	
90	68	45	46	418	406	
93	68	43	45	428	415	
93	68	43	44	429	390	打开大翼
						防冰
69	75	45	46	426	424	
69	80	45	46	425	424	
69	85	44	45	426	424	
69	90	43	44	426	423	
69	93	43	44	427	420	
69	93	43	44	427	420	打开大翼
						防冰
69	93	42	43	422	395	打开双发
						发动机防
						冰

通过这个数据,其实可以看出引气的温度和压力随发动机功率变动波动是正常的。说明不是 指示问题,后通过更换 450 解决。

二),译码

对于有完整数据的软件和 DFDAU,引气的温度和压力是可以直接译码获取的,对于此,基本上在排故上就没有大的障碍,因为很容易通过飞行高度,推力大小,引气跳开前的温度压力,就知道是哪一级出的问题,是冷路气不足吗,还是 PRSOV 活门该关未关,或是 450 出现了调节问题。下图是波音在培训时提供的译码案例。

READO	UT NO.:													
ECORDER T	YPE : DAR	DATI	E MOUNTED	: 05.TUL15	PRIN	T DATE: 0	5.TUL115							
EC/CASSET	TE NO.: 282						-							
	- Temporar					E: 1 SEC	FR	AME: 343						
40	1	1011			584	581	582	84530	5		1176	117	7 1171	1172
AIR/GROU	PRESSURE			PRECOLLE	PRECOLLE	BLEET	BLEEI		RADIO		EC	I	C ECS	ECS
	ALTI I	NDICATE	INDICATE	OUTPU	OUTPU	PRESSURE	PRESSURE	D AIR SW	HEIGHT	PA	CK FLC	PACK FI	C PACK ON	PACK ON
				LEF	RIGH	LEFT	RIGHT		FEET		LEF	RIC	H LEFT	RIGHT
AIR	8912	91.6	91.6		307.05		41.5	OFF	7803	LOW]	LOW	ON	ON
AIR	8958	91.6	91.6	485.51		14.33		OFF	7803	LOW	1	LOW	ON	ON
AIR	8999	91.6	91.6		308.94		41.2	OFF	7803	LOW	1	LOW	ON	ON
AIR	9042	91.8	91.8	487.2		14.23		OFF	7803	LOW	1	LOW	ON	ON
AIR	9084	91.6	91.8		310.63		40.2	OFF	7803	LOW	1	LOW	ON	ON
AIR	9129	91.8	91.8	488.88		13.91		OFF	7803	LOW	1	LOW	ON	ON
AIR	9172	91.8	91.8		311.89		40.77	OFF	7803	LOW	1	LOW	ON	ON
AIR	9214	91.8	91.8	490.15		13.7		OFF	7803	LOW	1	LOW	ON	ON
AIR	9260	91.8	91.8		314		40.79	OFF	7803	LOW	1	LOW	ON	ON
AIR	9304	91.8	91.8	491.62		13.38		OFF	7803	LOW	1	LOW	ON	ON
AIR	9348	91.8	91.9		315.05		40.34	OFF	7803	LOW	1	LOW	ON	ON
AIR	9396	91.8	91.8	492.88		13.44		OFF	7803	LOW	1	LOW	ON	ON
AIR	9441	91.8	91.9		316.32		40.55		7803	LOW	1	LOW	ON	ON
AIR	9486	91.8	91.9	494.15		13.19		OFF	7803	LOW	1	LOW	ON	ON
AIR	9532	91.9	91.9		317.79		40.57	OFF	7803	LOW	1	LOW	ON	ON
AIR	9575	91.9	91.9	495.2		4. 61		OFF	7803			LOW	ON	ON
AIR	9616	91.9	91.9		318.85		40.2		7803		1	LOW	ON	ON
AIR	9657	91.9	91.9	496.04		4.3		OFF	7803	LOW		LOW	ON	ON
AIR	9700	91.9	91.9		320.32		39.87		7803			LOW	ON	ON
ATD	0720	01.0	01.0	400.00		4 00		OPP	7000	LOW		OW	ON	ON

自己译码软件 AGS,包括此前的 AIRFASE,其实有一部分飞机是可以获取到飞机的引气压力情况的,实测只有极少的几架,不知道是不是软件库的问题,没有办法读取,其他飞机是可以通过译码软件获取到飞机的引气压力变化的情况。其实结合报文数据大概就能有一个判断了。

AG类:TELEDYNE DFDAU,512WP S/737-7

AG美[84]:FZA(1348 1350 1351 1433 1435 1480);CGN(1161 1162 1163 1481 1482 14 83);LKA(1208 1209 1586 1587 1588 1798 6800 6809 7988 7989 7990 7991 7992 79 93);CUH(1322 1323 1325 1569 1570 205T 205U 205V 206P);HNA(1101 1102 1103 1 130 1131 1141 1213 1215 1346 1347 137 2 1373 1375 1386 1487 1488 1489 1490 1 491 1492 1493 1495 1496 1497 1498 153 8 1541 1545 1547 1548 1549 1733 1735 2 06F 206G 206H 6103 7171 7172 7173 717 5 7377 7378 7379 7398 7399 7400 7619 7 639)

下图是使用 AGS 译码所得到的引气压力在同一高度层,随推力大小变化,所产生压力波动。

AIR_GND	BARO_FO_C (HPa)	ENG1N1 (%)	ENG2N1 (%)	MPL (psi)	MPR (psi)	PACKVLV1	PACKVLV2	AIWNG	ENG1AI	ENG2AI
AIR AIR AIR AIR	1013.2	64.00	64.00		33	ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1013.2	64.00	64.00	33		ON	ON	OFF	OFF	OFF
AIR AIR AIR AI	1013.2	63.88	63.75		33	ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1013.2	63.75	63.75	33		ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1013.2	63.63	63.63		33	ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1013.2	63.63	63.63	33		ON	ON	OFF	OFF	OFF
AIR AIR AIR AI	1013.2	63.63	63.63		33	ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1013.2	63.63	63.63	33		ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1013.2	63.63	63.63		33	ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1013.2	63.88	63.63	33		ON	ON	OFF	OFF	OFF
AIR AIR AIR AI	1013.2	64.00	63.88		34	ON	ON	OFF	OFF	OFF
AIR AIR AIR AI	1013.2	64.63	65.13	33		ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1013.2	66.00	66.25		37	ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1013.2	67.25	67.75	36		ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1013.2	69.00	69.50		41	ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1013.2	70.75	71.63	41		ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1013.2	72.88	73.13		46	ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1013.2	73.38	73.50	45		ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1013.2	74.00	74.25		48	ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1013.2	74.50	74.63	47		ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1013.2	74.75	74.75		49	ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1013.2	74.88	74.75	48		ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1013.2	73.63	73.13		46	ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1018.0	72.00	71.50	45		ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1018.0	70.38	69.88		41	ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1018.0	69.00	68.63	40		ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1018.0	67.75	67.25		37	ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1018.0	66.38	65.88	37		ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1018.0	65.00	64.63		34	ON	ON	OFF	OFF	OFF
AIR AIR AIR AIR	1018.0	63.88	63.38	34		ON	ON	OFF	OFF	OFF

其实即使没有引气压力的值,参考报文给出的温度和压力值,结合译码可以得到的在该时间 点下发动机功率、飞行高度。还以可以理清排故的思路。

还有一种方式,大家基本上没有用过,是用 ACMS 译码软件。对于 HONEYWELL 的构型,在当时设置引气报文的时候,附加了一个功能,就是记录在报文触发前和后各 5 分钟的引气压力和温度。这个数据是用附加文件的方式存储在 PC 卡里的,通过 ACMS 解译软件可以读出来。但运用情况不好,在 PC 存的过程中,常常发生数据丢失,且记录的间隔时间较长,并不连续,因而后面没有再使用。

四、小结

引气排故中,结合基础报文和译码,可以一定情况下缩小排故的范围。结合有译码的这部分飞机,则可以进一步得到跳开和引气变化的整个过程。而再没办法,还可以通过试车的方式来 得到数据验证。

CFM56-7B Estimated HPC Bleed Temperatures and Pressures

ISA Sea Level Static

Engine N1 %	9th Stage Pressure (psig)	9th Stage Temperature (deg F)		5th Stage Temperature (deg F)
20.17 (ground idle)	22	294	10	172
30.38 (approach idle, CTAI on)	44	420	17	247
40.00	69	498	27	304
50.01	100	582	40	365
60.00	137	662	56	426
70.01	182	749	78	493
80.00	236	834	103	559
90.01	303	924	132	627
97.71 (max climb)	316	940	138	639
101.37 (takeoff)	384	1025	168	706