关于起飞超轮速的历次波音沟通

1、SR HNA-HNA-24-0385-02B

为什么只有落地超轮速的特检AMM 05-51-07-000-801,没有起飞超轮速的特检。具体该如何操作。

因为波音没有执行过起飞超轮速的试验。

Boeing has reviewed Hainan Airlines’ inquiry and offers the following response:

Boeing is aware that overspeed takeoffs occasionally occur in the fleet and it is rare to see a tire fail simply due to a mild overspeed takeoff event. The potential tire problems resulting from a mild overspeed takeoff condition are problems which can also arise without an overspeed event, as they are most likely due to an existing fault (such as an internal separation or a deep cut that could result in a peeled rib or an entire tread loss). Boeing is unaware of any wheel failures that have occurred due to a mild overspeed takeoff event.

Since there have been no tire overspeed takeoff design requirements imposed or qualification tests performed, Boeing cannot formally approve allowing a wheel/tire assembly with overspeed takeoffs to remain in service. However, because of the fleet service history noted above Boeing has no technical objection if, in lieu of removal, operators examine wheels/tires following a very mild overspeed takeoff event using the existing criteria in AMM 32-45-00 TASK 32-45-00-700-803 and if no damage is found return the airplane to service. In addition, Boeing recommends that the tire serial numbers be recorded and that the tire retreader be informed of the overspeed event history when the tires are returned for retread. If Hainan Airlines decides to do this inspection/return to service in lieu of replacement please note that Hainan Airlines has the responsibility to coordinate with the appropriate regulatory agency (or agencies) to obtain all necessary approvals. If Hainan Airlines elects instead to remove the tires, the normal tire change inspection interval criteria (per applicable CMM) for the wheels is recommended.

Boeing has published an article in its AERO magazine that covers this topic (see Ref /A/ file attached). We suggest that Hainan Airlines review this article and in particular the section on Maintenance Actions near the end of the article.

2、SR HNA-HNA-21-1111

当出现起落架超轮速后,会有什么结果,能否放行。(225轮胎,安监的监控值为185节)

波音认为从部分航司的实际操作看,2-3节并没有发生问题。波音不反对这种情况。对于225的胎,建议设置监控为195.5。

Boeing is aware that, in China, due to advances in flight data recorder technology that enables easier data acquisition, widespread recognition of tire-speed-limit exceedance events during takeoff has been materialized. However, we have to caution our airline customers against rash decisions such as setting a warning threshold value as the safety check line.

There are no standardized industry maintenance guidelines if a tire speed exceedance occurs during takeoff. If the overspeed was very small (2 to 3 knots over the tires’ speed limit), it is unlikely that the tires would have suffered any damage. Some operators have elected to simply examine the tires after an overspeed takeoff event using the normal tire inspection criteria in the Airplane Maintenance Manual. If no damage is found, the airplanes are dispatched normally and no further maintenance actions are performed. Based on many years of service experience, this approach seems to have worked well, and Boeing has typically not objected to this practice because very few, if any, tire tread losses have been attributed to an overspeed event.

Note that tire speed ratings and tire overspeed capabilities are provided in the approved Boeing AFMs for 737 MAX, 777, 787 and 747-400/-8. For example, the following statements are included in all AFMs published for the 737 MAX:

Approved tires with a speed rating of at least 235 mph and a one-time overspeed capability of 260 mph must be installed on the airplane to utilize the allowable tire speed limit of 232 mph in AFM-DPI.

An option exists in AFM-DPI to utilize a reduced tire speed limit of 225 mph for approved tires with a speed rating of at least 225 mph and a one-time overspeed capability of 250 mph.

When an aircraft is dispatched in accordance with certification and operational regulations, the calculated takeoff performance guarantees that the airplane’s ground speed at the liftoff during takeoff ground roll will not exceed the tire speed rating (e.g. 225 mph or 195.5 knots for 737NG), provided Boeing-recommended all-engine normal takeoff rotation procedure in the Flight Crew Training Manual (FCTM) is followed. Therefore, a threshold value for tire overspeed event alert should be set and selected according to approved AFMs. In the AFM-DPI for 737NG, the value for tire speed rating is listed as 225 mph on the CONFIGURATION page, and Boeing recommends 225 mph or 195.5 knots as the limited ground speed for tire overspeed alert.

3、SR HNA-HNA-18-0855-02B

轮胎225的含义、超轮速了该怎么办、超轮速后是否应该更换刹车或轮胎。

对应地速195节,执行特检,有公司检查后放行。

Question 1:
What is the meaning of 225MPH on the tires’ sidewall? The airplane ground speed or the wheel speed?

Answer 1:
The tire speed and wheel speed is the same as they both move together as a single unit. It is important to remember that at high speeds, heat is generated within the tire structure. This heat, combined with extreme centrifugal forces from high rotational speeds, creates the potential for tread loss. Ensuring that tires are operated within their speed ratings will help prevent possible tread losses and the potential for airplane damage.

While rotation and liftoff/landing speeds are generally expressed in knots indicated airspeed, the tire speed limit is the ground speed, which is usually expressed in statute miles per hour. This means that a tire rated at 225 miles per hour is designed for a maximum ground speed at liftoff/landing of 195 knots.

Question 2:
When the speed of our airplane is out of 225MPH, how do maintenance recognize the overspeed information?

Answer 2:
When an overspeed landing is suspected, Boeing recommends performing AMM sub-task 05-51-07-210-801 when tires have been subjected to an overspeed landing above the rated tire speed. If the Step 2.A(4) brake energy calculation of that AMM shows that the landing was not in the CAUTION or FUSE PLUG MELT range and no fuse plugs actually melted, then only TASK 05-51-07-000-801 (Tire Removal After Overspeed Landing) needs to be accomplished.

If the Step 2.A(4) brake energy calculation shows that the landing was in either the CAUTION or FUSE PLUG MELT range or if any fuse plugs actually melted, then the appropriate additional AMM 05-51-07 inspections (High Energy Stop Conditional Inspection – In CAUTION range or the High Energy Stop Conditional Inspection – In FUSE PLUG MELT range) also need to be accomplished in addition to the tire removal.

Question 3:
If an overspeed event occurred, is it necessary that we should change the wheel or the tire?

Answer 3:
Some operators have elected to simply examine the tires after an overspeed takeoff/landing event using the normal tire inspection criteria in Chapter 32 of the AMM. If no damage is found, the airplanes are dispatched normally and no further maintenance actions are performed. Based on many years of service experience, this approach seems to have worked well because very few, if any, tire tread losses have been attributed to an overspeed event. Based on this service experience, Boeing has typically not objected to this practice.

4、SR HNA-HNA-24-0877-02B

向波音申请在195-198期间的超速情况,当段完成正常轮胎检查,航后更换。波音技术不反对。

Question 1:

What inspection is required to do for the takeoff tire overspeed and landing tire overspeed respectively?

Answer 1:

Boeing is aware that overspeed takeoffs and landings occasionally occur in the fleet and it is rare to see a tire fail simply due to a mild overspeed takeoff event, such as 2 – 3 miles per hour. Therefore, since there have been no tire overspeed takeoff / landings design requirements imposed or qualification tests performed, Boeing cannot formally approve allowing a wheel/tire assembly with overspeed takeoffs to remain in service. Hence, if a tire speed rating is exceeded (during takeoff or landing), Boeing recommends removing the tire from service. However, because of the fleet service history noted above, Boeing has No Technical Objection (NTO) for Operators to examine wheels/tires following a mild overspeed takeoff event (2 – 3 mph), using the existing criteria in Boeing’s 737NG AMM Task 32-45-00-700-803 ‘Tires – Inspection’. If no damage is found, Boeing is aware Operators have returned the tire into continued service. If this mild overspeed condition occurs, Boeing recommends that the tire serial numbers be recorded and that the tire retreader be informed of the overspeed event history when the tires are returned for retread. If a large overspeed condition has occured (above the 2 – 3 mph range), Boeing recommends the tire be removed from service as soon as the overspeed condition has been confirmed. Operating the tire in this condition can cause the tire to fail as explained in ‘Answer 2’ below.

Question 2:

What is the main influence, which the tire overspeed pose to the tire? Are there any inspections which can discover the overspeed status for tires?

Answer 2:

As noted in HNA-HNA-18-0855-02B, it is important to remember that at high speeds, heat is generated within the tire structure. This heat, combined with extreme centrifugal forces from high rotational speeds, creates the potential for tread loss. Ensuring that tires are operated within their speed ratings will help prevent possible tread losses and the potential for airplane damage. Unfortunately the only way to properly inspect the tire for damage is when the tire retreader performs its NDT inspections. This can only be done in a shop once the tire has been removed from the wheel.

Question 3:

HNA guess there is no risk when the groundspeed is less than 198 knots for the 225mph type tire according to the the article in the AERO magazine and the SR mentioned above. HNA is going to make a policy, when the groundspeed is between 195 and 198,the tires are arranged to be replaced in the first AF phase. Could BEOEING offer an NTO ?

Answer 3:

Boeing has No Technical Objection (NTO) if Hainan Airlines Holding creates a policy when an airplane exceeds 195 knots (224.4 mph) and performs the recommendations outlined in ‘Answer 1’ and ‘Answer 2’ above.

CFM56-7B的VSV作动环衬套丢失

Case #01967027

2024年4月,有飞机反映有多个VSV作动环衬套丢失,件号9944M44P01。

1、手册放行标准判断

根据AMM72-32-00-210-002-F00,第1第2级衬套允许缺失数量是3个;如缺失数量超过4个,200飞行循环修复;如缺失数量超过5个,则立即更换。衬套腿(leg)缺失是允许的,修复第1第2级新衬套也是把腿打断了才能安装。

对于第3级衬套,CFM认为由于第3级作动臂销向下定位,很难对作动环衬套进行潜在的检查。因此,第3级衬套没有要求检查。此外,CFM在每一级多达10个法兰衬套缺失的情况下做了相关测试,发现发动机的可操作性不会受到影响。鉴于此,在下一次飞行之前不需要采取进一步措施。尽管如此,CFM建议客户尽早更换丢失的衬套。

2、衬套更换

1)第1和第2级衬套可以根据AMM72-32-00-900-801-F00修复。第3级衬套可以根据AMM72-32-00-900-802-F00 (IGV和第3级作动臂和衬套的更换)和AMM72-32-00-900-804-F00(连接环更换)程序进行更换。除AMM程序所要求的以外,不需要任何测试。

2)第1第2级衬套在作动臂上部,修复不需要拆任何部件。修复步骤大致如下:清洁安装区域,剪掉衬套4个leg,将衬套塞进丢失位置,在衬套顶部外法兰涂上RTV106胶并固化。

第3级(和IGV)的衬套在作动臂下部,这也是不易检查,厂家也没有给出衬套损伤标准的原因。

就此与GE做了讨论,GE表示

Q1. 驱动环缺失衬套的根本原因是什么?是否与衬套的材料和设计缺陷有关?
答复:衬套由复合材料制成,会随使用时间推移发生磨损。

Q2. 针对驱动环缺失衬套问题,CFM是否有相关措施和改进计划?
答复:无,CFM目前未开展或计划开展任何与驱动环衬套耐久性相关的改进工作。

Q3. 为缩短固化时间,能否对RTV 106进行加热?
答复:根据RTV制造商技术数据表,固化时间受粘接面尺寸、温度和湿度影响。制造商指南指出:在77华氏度(25℃)和50%湿度环境下,1/8英寸(3.175毫米)厚胶层约需24小时完全固化——这与飞机维护手册(AMM)的指引一致。

Q4. 若Q3可行,建议的固化温度和时间参数如何设置?
答复:为缩短24小时固化时间,CFM推荐以下流程:

a)在执行AMM任务涂抹RTV 106至衬套时,同步在压舌板上涂抹等厚度RTV胶条,并将其置于高压压气机匣靠近安装衬套位置。在C型管道下方布置石英灯,对准带有修复衬套的VSV杠杆臂,灯具距离更换衬套1-3英尺(0.3-0.9米)。确保带有RTV 106的压舌板位于维修衬套同一区域。
b) 固化2小时后,用刀片切割压舌板胶条末端。若RTV 106已固化至中心层,触感应无粘性。若压舌板胶条切割处中心已固化,即可完成维修并使飞机恢复正常状态。
c) 若切割处中心未完全固化,则需继续使用石英灯辅助固化2小时,并重复上述(a)评估流程。
d) 按(a)(b)步骤持续评估RTV 106状态,最长不超过涂抹后24小时。满24小时后允许完成维修并使飞机恢复正常状态。

    注:CFM未提供变量(如灯具功率/距离)加速固化时间的具体指引。RTV 106(迈图高性能材料公司生产)技术数据表明确:”升温和加湿可加速固化,降温和干燥环境会延缓固化速率”,故推荐采用”测试样本”验证法。

    关于MAX MEL27-88-01-01 与NG MEL27-04-02-03的差异

    SR HNA-HNA-24-0384-05B

    针对前缘襟缝翼指示,737MAX和NG均有相关的条款。但在实际执行时发现存在一定的差异。

    1、关于抖杆工作时长有无限制限制要求

    NG: AMM Task 27-00-00-040-818 stepD.(7). (c)“Make sure that the control column stick shakers operate for more than five seconds.”

    MAX:DDG 27-88-01-01 MAINTENANCE (M) step6.“C. Confirm the control column stick shakers operate normally.”

    DDG(M)步骤6.C中的语句是正确的。只要失速警告测试面板P5顶置面板上的失速警告测试1号和2号开关按下,控制柱斗杆振动筛就会工作。一旦释放开关,控制柱斗杆振动筛将停止工作。波音公司正在就取消等效AMM程序中5秒时限的时间进行内部协调。

    2、在工作步骤中,NG有要求确定故障对应具体襟翼位置,并拔出跳开关,并测试抖杆工作是否正常。实际上拔出跳开关是用来抑制SMYD前缘不对成偏置功能,和限制FSEU内的起飞构型警告偏置功能,从而不影响正常的失速警告功能。但是在MAX上并没有相关确认的要求。

    确定导致不工作指示的后缘襟翼位置。
    注:如果故障指示是间歇性的或在地面不能再现,使用FSEU BITE来确定FSEU输入是否有近期故障。如果FSEU BITE(航段0)指示故障信息码为27-81200到27-81223或27-81225到27-81236,拔出并固定P18-2板上的失速警告不对称方式跳开关。如果因为故障指示灯瞬间ON/OFF闪烁导致故障不触发使得FSIM BITE不产生以上故障码。且可确认适用的缝翼固定在观察到间歇性指示时的位置,则拔出失速警告不对称方式跳开关并装上卡环。

    波音表示当传感器故障后,将不再能参考本条款放行(EASA已经于2024年2月改版)。本条款将仅限于灯光故障的保留。

    1.LE顶置面板中的灯泡烧坏会导致本应亮起的灯保持熄灭。这适用于TRANSIT、EXTEND和FULL EXTEND灯。在这种情况下,由于只有灯泡烧坏,P2板的等将正确点亮并发出信号。
    2.头顶面板上保持照明的过渡灯。这可能是传感器故障造成的,也会导致前向LE TRANSIT灯亮起,因此不允许MEL放行。
    3.放出或完全放出的灯,当它不应该点亮时点亮。这可能是传感器故障造成的,也会导致前向LE TRANSIT灯亮起,因此也不允许MEL放行。

    基于以上三条,对于NG而言,根据MMEL 27-04-02-03(对于-800,类似于其他型号),MEL保留放行是可行的。

    对于MAX而言,就没有必要自检FSEU故障代码,也不建议拔出不对称失速跳开关,因为故障传感器和/或相关接线是不可保留放行了。仅在灯泡烧坏的情况下,不会记录FSEU故障代码,也不需要拔出跳开关。

    波音公司另外表示,我们最近识别到失速警告不对称模式跳开关拔出,会触发状态信息“STALL WARNING SYS L & R”并点亮维护灯。由于没有MEL项目可以放行状态信息“STALL WARNING SYS L & R”。状态消息“失速警告系统L(R)”没有(M)MEL释放。MAX的MEL 27-88-01-01维护(M)步骤6 D–“如果两个抖杆器都不能正常工作,拔出并固定P18-2板上的STALL WARN ASYM MODE跳开关,然后重复执行步骤B和C。”最近已从MMEL项目27-88-01-01的EASA 737 MAX DDG中删除。波音公司预计,在下一次FAA 737 MAX DDG修订中,根据FAA的指示,该步骤也将从737 MAX FAA DDG中删除。

    备注:在手册改版前参考现行版本MEL执行。

    少见的线路故障导致后缘襟翼指示异常

    2024年4月有飞机连续反映出现,后缘襟翼差值超5度报文,反映出来是左侧角度异常,与以前的案例不同的是,原来的差值常见于过渡态,而本案是在达到稳态后进一步出现漂移。在更换了3个传感器后故障依旧。

    从数据表现看如下图所示,左侧角度存在摆动。因此怀疑机械机构存在空行程或者线路问题。进一步对偏斜传感器的值做了译码,并未有摆动的情况,因而分析机械机构的可能性较小。

    与波音做了沟通后,波音建议做襟翼的检查。

    机械检查结果如下,满足手册要求。左侧相对于右侧偏小,但都在手册范围内,同时完成润滑,现象还是依旧。

    襟翼传动系统调节校装

    4号、5号襟翼丝杠止动间隙为零
    左侧
    1号襟翼丝杠止动间隙2.0毫米、
    3号襟翼丝杠止动间隙2.2毫米,
    2号襟翼丝杠止动间隙3.0毫米
    右侧
    6号襟翼丝杠止动间隙4.0毫米
    8号襟翼丝杠止动间隙4.4毫米
    7号襟翼丝杠止动间隙5.0毫米

    再次更换传感器后,在后缘襟翼25个单位时,偏差值达到最大。

    后转向对线路进行检查,发现测量D40024J的PIN40-41两两绝缘40K(手册要求大于40M),退出D275 PIN11/3,D40024J的PIN40/41,量PIN40-41两两绝缘3.31M,PIN11-3两两绝缘 385M,检查线路时 ,轻拽线时发现D275 PIN11线路断裂(损伤位置位于猪尾巴附近),剥开线发现 2007R线的线芯已插进屏蔽层,2007B绝缘层也有磨损,清理损伤区域,重新亮PIN40-41两两绝缘10G。

    完成线路修复后,收放回复正常,无剪刀差。

    加拿大航空737MAX货仓火警

    2024年4月9日,加拿大航空公司一架注册为C-FSIP的波音737-8 MAX执行AC-997航班,从墨西哥城(墨西哥)飞往不列颠哥伦比亚省温哥华(加拿大),载有122名乘客和6名机组人员,在飞往美国爱达荷州博伊西西南约120nm处的FL380航班途中,机组人员收到货物烟雾指示,决定改飞博伊西。大约40分钟后,飞机安全降落在博伊西10R跑道上。一架替换的波音737-8 MAX飞机抵达温哥华,延误约8小时。事故飞机在博伊西的地面上停留了大约8个小时,然后回到温哥华,在温哥华降落大约13个小时后仍在温哥华的地面上。该航空公司报告称,是传感器故障导致航班备降。

    [ Back To Top ]