新构型登机门阻尼器断裂

ISO-52-24-47595

日本航空(JAL)发帖,表示在2024年5月(JA301J,L/N:2095)和2024年9月(JA307J,L/N:2450)经历了两次由于前登机门阻尼器(P/N:50150-1)杆断裂导致的航班中断。

这些缓冲器是改进型,通过737-SL-52-044的建议引入。

断裂阻尼器的信息如下:

  • 零件号(P/N):50150-1,
  • 案例1:TSI(总服务时间):33187,CSI(循环服务时间):26721
  • 案例2:TSI:39974,CSI:32730

JAL初步调查显示,缓冲器杆从内螺纹的谷底开始发生疲劳断裂。此外,日本航空发现安装在缓冲器两端的轴承卡死。

因此,日本航空认为断裂可能是由于在阻尼器伸展或收缩过程中引发的柱屈曲column buckling condition条件所致。

CHX和美西南表示旧构型有过断裂,使用新构型替代。

SHZ航跟帖表示发生过一起。涉及的缓冲器零件号为 50150-1,序列号为 TAS-V02240,发生在 B-5410 飞机(生产线号:2771)上。该阻尼器的使用时间为 44915 飞行小时 / 23989 飞行循环。

点评,轴承确实是可能性之一,实际相当于旧构型的内部卡滞。

美联航MAX因喷嘴未拧紧导致燃油渗漏

一架美国联合航空的波音737-9 MAX飞机,注册号为N37516,执行从佛罗里达州劳德代尔堡飞往新泽西州纽瓦克的UA-2376航班,机上载有179名乘客和5名机组人员。飞机在纽瓦克机场22L跑道降落并滑行至停机坪时,左侧发动机(LEAP)出现火警指示。机组人员关闭了发动机并向发动机释放了一个灭火瓶,火警指示随后消失。未见烟雾或明火,飞机被拖至登机口,乘客正常下机。

2023年7月7日,美国国家运输安全委员会(NTSB)报告称,维修人员发现发动机有燃油泄漏的迹象。打开反推装置后,观察到发动机外壳和外部表面有热损伤和烟灰。

2025年1月30日,NTSB发布了最终报告和调查文件,结论是该事件的可能原因是:

1号(左侧)发动机起火是由于燃油泄漏,泄漏源自燃油喷嘴17的b型螺母连接处未按照飞机维护手册程序正确拧紧。

NTSB分析:

1号(左侧)发动机起火是由于燃油泄漏,泄漏源自未正确拧紧的燃油喷嘴17的副进气口b型螺母。泄漏的燃油接触到热的发动机外壳表面后点燃,导致发动机舱内起火。发动机拆解过程中记录的燃油喷嘴b型螺母扭矩测量显示,燃油喷嘴17和18的副进气口b型螺母扭矩为零,且无阻力即可松开。四个燃油喷嘴(位置4、16、17和18)在俄亥俄州埃文代尔的GE航空航天故障分析实验室进行了检查,未发现任何异常,如果b型螺母按照飞机维护手册正确拧紧,这些喷嘴应能正常运作。

尽管与此次发动机燃油泄漏事件无直接因果关系,CFM LEAP系列发动机燃油喷嘴积碳问题已导致整个机队早期和频繁更换燃油喷嘴。

据美国联合航空(UAL)称,截至2024年10月,他们已完成443次CFM LEAP机队燃油喷嘴组的更换。

惯导模式选择面板MSU旋钮脱落

自有案例加网络公众号

一、背景

自2024年以来,惯导模式选择面板旋钮脱落的案例呈现增多的趋势。

年份旋钮脱落事件数量
20191
20231
20243
2025(2月初)2

典型的表现图片如下所示。

二、基本原理

1、模式选择组件(MSU)将 IR 选择模式传送到 ADIRU,它还提供 ADIRS操作和故障指示。MSU 有两台模式选择器,一个用于左 ADIRU, 一个用于右 ADIRU。

2、每个状态选择器有四个位置:

· OFF位:ADIRU 不可操作

· ALIGN 校准位:使 ADIRU 起动校准程序

· NAV 导航位:ADIRU 在成功校准后进入导航模式

· ATT 姿态位:ADIRU 进入姿态模式。

3、面板有以下指示灯

· ALIGN :在 ADIRU 校准期间一个白色信号灯持续发亮,当 ADIRU 需要信息时, 信号器会闪亮。

· ON DC:接通直流,当 ADIRU 在 28 伏直流电电源上时琥珀色信号灯持续发亮。

· FAULT:故障,当 ADIRU 的 IR 功能失效时琥珀色信号灯持续发亮。

· DC FAIL:直流故障,当直流电电源低于 18 伏直流电时琥珀色信号灯持续发亮。

4、需要注意的是,模式选择器具有降低飞行机组意外将 ADIRU 正在运行模式意外中止的这一特征。

1)、选择器设置在 NAV 位置时, 操作员必须拉起旋钮, 将它放在 ATT 模式上。

2)、选择器设置在 ALIGN 位置时, 操作者必须拉起旋钮将选择器放在 OFF 位置。

3)、所有其它位置改变不需要操作者拉动旋钮。

因此: 有些电门必须先拉出, 然后再转动。如拉出它们之前试图转动这些开关, 会损坏开关。

三、旋钮脱落问题

从上文可以得知当从NAV位置到ATT位置,或者从ALIGN到OFF位置,需要拉出旋钮再转动,防止工作中的惯导意外停止。也就是说连杆一旦松脱后,就没有了这个功能,同时在实际工作中还发现连杆掉出后是无法再次插到底部、无法校准惯导、航线是无法修复的,需要更换面板。

当一侧导航面板故障后,另一侧功能正常的情况下,可以参考MEL34-35 惯性基准系统(IRS)失效放行。但是规定:执行 CAT II、 RNP/RNAV 运行时,两部 ADIRU 都必须有效。只限于白天目视气象条件(VMC)下飞行,光是这一条就不满足签派放行了,基本上没有放行成功的案例。

进一步看,实际上旋钮是没有问题,主要出问题的里面的电门,件号44HY24962(下图70)。

44HY24962是一个由 Grayhill Inc. (GRAYHILL INC,561 W HILLGROVE AVE,LA GRANGE, IL 60525-5914)制造的多层旋转开关(Multi-deck Rotary Switch),额定电流为 1 安培。

在修理中通常对此类故障的处置方式是:

分解照片

1、起到固定拨杆作用的是一个销子。

2、起到档位限制和需提起才能转换的是如下机构组合。

3、4个档位电门是靠内部转块来实现的。

MAX SPU (PN 1152464-265) 可靠性问题

ISO-49-25-48395

阿拉斯加航空开贴,2024年故障拆卸的所有SPU在机翼上的使用时间均少于2000个飞行循环,主要因以下两个代码拆下。

1、49-41255 (START POWER UNIT SHOWS HIGH TEMPERATURE)

2、49-41297 (START POWER UNIT SHOWS INTERNAL FAILURE)

他们送修19个,有10个出现NFF返回的情况,52.6% NFF rate in 2024。

Ryanair跟帖

瑞安航空(Ryanair)注意到在2024年期间,MAX机队中SPU的拆卸数量显著增加,尤其是全新件的首次拆卸。在对首次拆卸的部件进行深入分析后,我们发现:

1、2024年共有24个单元被拆卸,其中新件SPU的平均拆卸时间为6465飞行小时(FH)和3162飞行循环(FC)。需要注意的是,在某些情况下,同一故障排除过程中报告了多个类似故障代码。在2024年拆卸的24个单元中,有16个报告了故障代码49-41255(启动电源单元显示高温),有3个报告了故障代码49-41297(启动电源单元显示内部故障)。

2、扩大对2022年以来新件的调查发现

  • 故障代码49-41255 已被报告28次,其中:
    • 有10次明确报告称,在尝试使用电池启动APU时出现“BAT放电灯”(BAT Discharge Light),或APU无法在没有外部电源(GPU)的情况下启动。
  • 故障代码49-41297 已被报告8次,且从未与故障代码49-41255同时出现。
    • 其中有4次明确报告称,在尝试使用电池启动APU时出现“BAT放电灯”,或APU无法在没有外部电源(GPU)的情况下启动。
  • 故障代码49-41253 已被报告5次,其中:
    • 有1次明确报告称,在尝试使用电池启动APU时出现“BAT放电灯”,或APU无法在没有外部电源(GPU)的情况下启动。

这些数据表明,SPU相关故障代码的出现可能与APU启动过程中的电瓶放电问题或外部电源品质有关。

3、对修理报告的统计则表示

1)2023年数据:
11个单元被判定为NFF(无故障发现,73%),以及4个单元被修复但故障未确认。
在11个NFF单元中,6个单元的发现与2024年中被视为“故障未确认”的单元相似:机箱/E1接地螺栓上有密封胶。因此,实际的NFF单元应为5个(33%)。
在4个被判定为“故障未确认”的单元中,3个单元发现J1连接器存在电弧现象。
2)2024年数据:
4个单元被判定为NFF(16%),以及18个单元被修复但故障未确认(75%)。
修复单元的主要发现:单元通过输入测试,机箱/E1接地螺栓上有密封胶。
在18个“故障未确认”的单元中,5个单元在J1连接器上发现问题:插针更换、电弧/插针损坏。
总结:
2023年:NFF和“故障未确认”的单元中,密封胶问题和J1连接器电弧是主要发现。
2024年:密封胶问题仍然是主要发现,同时J1连接器问题(插针损坏/电弧)在“故障未确认”单元中占比显著。

ASA更新分享数据如下:

ASA的分析包括了首次拆下的SPCU和修理件。ASA没有发现首次拆下与修理件在可靠性上有显著差异。

以下统计代表了ASA关于此问题的最新发现,并取代了之前分享的发现。

按年份统计的拆下次数

  • 2021年,5次拆下,平均A/C CSI 7866,平均A/C TSI 24533
  • 2022年,8次拆下,平均A/C CSI 7512,平均A/C TSI 28120
  • 2023年,5次拆下,平均A/C CSI 3749,平均A/C TSI 12840
  • 2024年,19次拆下,平均A/C CSI 4624,平均A/C TSI 14442

2021-2024年拆下报告中的SPU相关故障代码

  • 故障代码49-41255(启动电源单元显示高温)报告了14次
    o 其中1次特别报告发现SPU风扇不工作。
  • 故障代码49-41297报告了6次
    o 其中3次报告APU无法用电池启动
    o 与49-41255同时发现1次。
  • 故障代码49-41249报告了8次
    o 与49-41255同时发现3次
    o 与49-41297同时发现2次
  • 故障代码49-41253报告了1次

2024年拆下的车间发现

  • 8次拆下无故障发现(NFF)
  • 9次拆下发现E1螺栓损坏/密封剂污染
  • 2次拆下发现J1引脚损坏
  • 1次拆下发现DC-DC转换器缺陷

ASA还启动了BCS案例ASA-ASA-25-0016,请求OEM对SPU拆下情况发表评论。ASA已收到以下临时回复:
“霍尼韦尔对车间报告的审查显示,一些拆下与SPU内的DC-DC转换器单元问题有关。然而,目前对于SPU可靠性问题的原因尚无定论。随着审查的进展,将在更新的截止日期前提供进一步的更新。”

抖杆马达线路问题导致不工作

2025年2月,有19*8(FH30049,11年)反映副驾侧抖杆测试时好时坏,重置跳开关重装插头无效,自检SMYD无信息,敲击马达测试间歇性不工作。检查发现马达供电线路W0147-0001-20和W0147-0002-20在卡子处断裂。案例较少以作记录。

线路是使用了管套加以保护,相对较硬。整体布线以线卡为对称点,形成了类似M形的一个布置。从断裂点看,是从线卡出来过边框的位置,因为和边框并无接触,因此排除了直接干涉。而断裂点的上游(供电端)线路相对宽松,排除了直接拉扯的问题。该线路唯一受到的影响就是抖杆马达工作时的抖动。因此断裂的较大可能性是,在初始布线的过程汇中,由于线路较硬,在装进线卡后,对线在该位置做了弯折和扭转(从上游的线路看,有大概90的转动),因此有初始的应力集中点损伤。在后续抖动的随动中损伤逐步的扩展。

机队历史上还出过1次,后续根据案例样本,看要不要列为老龄化的管控。因为是纯施工问题导致的,因此在更老龄的飞机不一定存在这个典型问题。

当前的工程措施如下:

1、MP失速警告系统功能检查27-088-00,间隔20000FH;

2、每日航线工卡执行抖杆马达测试;

3、EWIS系统有EZAP项目20-290-00覆盖此区域,间隔36000FC;

4、区域检53-804-00里也覆盖前电子舱内EWIS(EZAP)检查,间隔11000FC;

[ Back To Top ]