引气隔离活门卡滞

ISE-36-19-28232

由于引气隔离阀被卡滞,Jet2.com的737-8MG机队继续出现滑回和延误。该缺陷通常表现为2号发动机未能达到23%的转速引气压力,导致无启动。这对Jet2.com来说是一个相对较新的缺陷,我们只在我们的新机队(所有机队都不到3年)上遇到过。迄今为止,Jet2.com已经10次计划外拆除了该阀门,并导致延误事件。所有故障阀门都在自生产以来安装的5500小时机翼TSN附近发生故障。当返回车间时,通常会发现这些装置在转动操作中被卡住,轴承中有FOD,轴承座圈和轴也有腐蚀。FOD已被送去进行冶金分析,发现是一种镍基化合物。Jet2.com最近在我们的一架737-8NG飞机上安装了一个新检修的阀门,该阀门在飞行2000小时后发生故障,报告的缺陷与新阀门相同。

Jet2.com从一架寿命中期的737NG上拆下了一个可用的阀门,自上次大修以来已有12867小时。可靠性团队的工程师在阀门分解过程中全程参与,并观察到与故障阀门相同的明显发现。应注意的是,该阀门通过了所有进场测试,手动操作时操作僵硬,但在电机功能下操作时没有问题。参阅下图。Jet2.com已经调查了这两个机队在操作或维护实践方面的任何差异,但一无所获
显著明显。原始设备制造商(OEM)正在对此进行详细调查,他们最初提出了外部污染问题,但由于上述可维修阀门中发现的污染没有导致故障,Jet2.com对这一结论不满意。除此之外,原始设备制造商或波音公司都无法解释这种污染的来源。目前,在单位或零件序列号方面没有发现任何表明批次问题的显著趋势,原始设备制造商也注意到没有发生生产变化。由于Jet2.com没有问题的根本原因,我们认为这仍然是我们737-8MAX和NG机队延误的重大风险。

PN: 2760000-101 SN: 3632C (12,867 FH / 4,290 FC)

1,进场测试

2,分解

SQ跟贴

经历了4次2号发动机无法启动的事件,原因是隔离阀无法打开,导致供给2号发动机的引气压力不足。在所有4次事件中,阀门都无法手动打开,发现了阀门轴承被黑色氧化物粉末腐蚀。SQ认为轴承腐蚀在延长停飞期,因为所有4起事件都发生在2019年之前交付的737MAX机队上(停场2年以上),并已更换所有其他类似接地的阀门。隔离自RTS以来,这些飞机上的阀门已经失效了大约一年——当MAX机队出现故障时,它们并没有立即失效已重新激活。SN范围在11731-12568之间,TSN范围在2800FH-8200FH之间。另外,帕克已通知我们,他们收到了亚洲地区运营商的类似报告,并且有帕克提出的设计变更,但被波音公司拒绝。SQ面临的问题与Jet2.com报道的问题几乎相同,只是这影响了我们的737MAX。如果其737MAX机队存在任何类似问题,SQ希望寻求其他运营商的反馈。

Flydubai更贴

近几个月来,由于2号发动机无法通过APU引气启动,Flydubai发生了多达四起滑回事件。发现双引气状态信号上的维护消息36-00051处于活动状态,其前几段有故障历史。根据波音IFIM检查进行故障排除,除发现引气隔离阀2760000-101的操作是间歇性的,有粘性/束缚运动,因此进行了更换外,没有发现任何问题。
在过去的一年里,有7个阀门发生故障,故障阀门平均只持续8400小时;最老的瓣膜在10700小时失效,最年轻的瓣膜在5900小时失效。
现有的6份修理报告通常显示:
1) 由于轴承2793733-101腐蚀和轴承内圈上的衬套2763558-102腐蚀和卡住,阀门无法通过电子方式完全关闭/打开,叶片在行程中期卡住。
2) 打开和关闭位置的手动超控测试失败。将手动超控装置移动到打开或关闭状态所需的最大扭矩必须为35 lbf in。然而,在打开和关闭位置,测得的扭矩都超过了35磅力英寸。
3) 密封件2793777-101和环组2763565-101因与阀体内径密封面接触而磨损。
其他不常见的发现包括:
1) 开关组件5842116-105电阻故障。
2) 入口和出口法兰腐蚀2763556-101。
3) 弹簧F61C2121磨损。
4) 垫圈2763554-101不圆且变平。

5) 柱塞5823289-101,带有深耐磨槽。
Flydubai在运营延误中损失了近30个小时,包括登机口返回和AOG离开运营基地,发动机无法启动。
在过去的12年里,737-800机队上飞行的相同零件号没有表现出如此糟糕的可靠性/低时间故障,但现在在多架年轻的737MAX飞机上呈上升趋势。
鼓励其他运营商报告其737MAX和/或737NG机队上的放气隔离阀2760000-101的性能。
要求波音公司紧急审查其他运营商在本FIX论坛上报告的数据,并与阀门制造商帕克就阀门故障的根本原因调查进行联络,并尽早采取纠正措施。
了解波音公司计划更新双放气指示的IFIM,以重复循环P5-10面板上的隔离阀开关从关闭到打开几次,以释放阀门的运动。
建议波音公司也将这种隔离阀开关的重复循环纳入波音FCOM中,用于正常/辅助发动机启动程序,以便及时指导机组人员,避免闸门返回和操作AOG。

737MAX的LRD系统引起客舱烟雾

背景:2023年有两起LEAP-1B发动机的鸟击事件,导致了发动机空停,并导致了严重的叶片损伤、客舱浓烟和EGT警告。

LRD系统(Load Reduction Device)
在风扇叶片破损或风扇严重损坏期间,会产生严重的风扇旋转不平衡,这种不平衡必须由轴承、轴承支架、风扇框架和吊架来支撑

  • 如果增加这些支撑组件的尺寸以能支撑此负载,会增加发动机重量
  • 减载装置 (LRD) 是一种机械弱化部件,可将风扇转子与风扇支撑系统分离,从而减少传递到发动机结构的负载,以防万一风扇叶片破损并能保持更轻的发动机设计
  • LEAP-1B 包含两个 LRD 组件:
    – 在 #1/#2 轴承支架上
    – 在 #2 轴承基座上
  • LRD激活 后,风扇转子寻找新的旋转中心。风扇机匣和耐摩层调整大小,以允许风扇叶片摩擦耐摩层和沟槽填充物并让转速降低以最大限度地减少硬摩擦影响风扇机匣结构的可能性

减载装置LRD可优化发动机设计并减轻发动机重量,从而让发动机更高效

LRD 激活后通过在 #1/#2 轴承支架的后法兰和风扇框架之间创造间隙来打开 A收油池,这会导致A收油池中的滑油泄漏到气流通道中,驾驶舱和客舱中会有烟雾(Smoke/fume)。

在上述的2起鸟击案例中,在LRD激活后,都发生了烟雾的时间,A-SUMP的油流到通道中。

波音发布了Flight Crew Operations Manual Bulletin (OMB),向机组通报当发动机严重损伤的时候,客舱可能导致的结果。波音还会发布FTD对该类事件的调查进展做说明。

2024年11月,波音更新MOM-MOM-24-0605-01更新

737 MAX FCOM/QRH, releasing now, includes enhancements to the relevant systems descriptions and Non-Normal Checklists.

737MAX反推隔热罩损伤

ISO-54-24-46270

GLO分享他们机队遭遇了较多的反推隔热罩出现不明原因的损伤,希望获得其他航司的运行数据。

Part Information: 115A6141-3 / 115A6141-4 / 315A6141-1 / 315A6141-3 / 315A6141-4

冰岛航空跟帖表示存在类似问题,相关飞机信息如下:

737Max-9 / Delivered 22 Feb 2019
737Max-9 / Delivered 19 Jan 2022

flydubai跟帖表示同样观察到737-8和-9反推隔层垫损坏。调查结果主要集中在以下两个领域。
1.不在焊接区域的冷侧边缘上的裂纹(可以在任何拐角边缘看到)。
2.TPS面板折痕/折叠区域的热侧(银/金属侧)出现裂纹。

受影响的零件:315A6141-1、315A6141-2、315A61410-3和315A6141-4
根本原因:未知。对移除程序进行了评估。没有任何迹象表明拆除时有任何不当处理。

美西南737MAX发生荷兰滚

2024年5月25日,美西南航空公司一架注册号为N8825Q的波音737-8 MAX飞机,在执行从亚利桑那州凤凰城飞往加利福尼亚州奥克兰(美国)的WN-746航班时,载有175名乘客和6名机组人员,在FL320的高度,飞机发生了荷兰翻滚。机组人员得以重新控制飞机,并在大约55分钟后将飞机降落在奥克兰的跑道上。
美国联邦航空局报告称:“飞机经历了倾翻、重新控制和飞行后检查,发现该机方向舵备用PCU受损”,并表示飞机遭受了严重损坏,该事件被评为事故。
这架飞机在奥克兰的地面上一直停留到2024年6月6日,然后被安置在华盛顿州埃弗雷特的波音工厂,6天后仍在埃弗雷特的地面上。
Dutch Roll是飞机因方向稳定性减弱(由垂直尾翼和方向舵提供)而产生的耦合异相运动,飞机围绕其垂直轴和纵轴振荡(耦合偏航和滚转)。

经进一步了解到的情况如下:空中偏航阻尼未脱开,确实发生了荷兰滚,机组反应能正常控制飞机姿态,因此继续执行航班到了目的地。地面自检有低级别27-90001(NO RESPONSE FROM SMYD-2)的信息,BITE测试不通过,SMYD2黑屏,更换了SMYD2。在检查主控PCU的时候发现COTROL ROD有损伤,将PCU和COTROL ROD同步更换。备用PCU支撑结构有裂纹。波音的译码显示1,机组在对准跑道后还在大角度登舵校正,机长表示是地面登舵时偏硬,有顿了一下的感觉,询问副驾有无反向登舵,副驾表示没有;2,备用PCU全程未有作动。飞行阶段气象表示未有大的阵风。

与此相关的有两个材料,一个是737-FTD-27-12002,谈到一个800飞机在经历了小型龙卷风后,方向舵PCU支架受损,导致首班发生方向不受控导致返航,舵面未能发现明显异常。一个是737-SL-27-241-A同样谈到由于狂风的原因,可能导致舵面PCU受损,并且从表面看不到迹象,建议在类似气象时转场。


背景知识:MAX和NG在系统设计上是一致的。方向舵共有两个PCU,一个主PCU,一个备用PCU。PCU是动力控制单元,是控制(垂直)方向舵的执行器。主PCU使用的是A、B系统压力(同时使用)而备用PCU使用备用液压系统提供的备用液压源。FFM监控主PCU压力差值超出标准时,FFM将自动打开备用液压泵,从而给方向舵备用PCU增压,接通备用液压,点亮的STBY RUD ON灯。

阵风阻尼由主用方向舵PCU处理,而备用方向舵PCU中不存在此功能。

当前定期项目如下

2024年7月10日更新

美国全国运输安全委员会NTSB发布5月25日一架美西南737 MAX 8飞行途中发生「荷兰滚」事件初步调查报告,初步报告仅陈述调查中发现的内容,不涉及事故原因及改进建议。

据飞行员回忆,起飞前的滑行、后退和起飞阶段都很顺利。然而,在转向跑道、切换到使用脚蹬操纵后,机长注意到脚蹬有瞬间的僵硬感。

起飞后,飞机在爬升至 34000 英尺的巡航高度期间偶尔出现轻微颠簸。负责操纵的机长称,在达到巡航高度后不久,飞机在穿过一些轻气流时,开始出现轻微荷兰滚现象。他表示,「滚转很稳定,更明显的是频率,只有轻微的摇摆。」振动只持续了几秒钟,自动驾驶仪在整个事件中一直处于接通状态。副驾驶将该事件描述为「飞机尾翼的奇怪运动,结合非常轻微的左右方向舵运动。尾翼的运动很明显,但不过度。」

两名飞行员就此进行了讨论,他们认为在飞机振动期间感觉到方向舵踏板在移动。他们推断,振动不是由湍流而是由飞机本身引起的,因为方向舵踏板不应随偏航阻尼系统移动。

此后经过飞行员与管制员协调,飞行高度下降至32000英尺,期间遇到了类似的飞行条件。飞行员在随后的巡航过程中又经历了几次类似飞机运动,机长感觉到与振动同步的舵杆运动。偏航阻尼灯没有亮起,飞行全程中也没有主警戒告警。

飞机平安抵达目的地后,在滑出跑道后,机长感觉到了与之前飞行中观察到的相同的振动和踏板僵硬。

5月25日事件发生后,美西南对主方向舵电源控制组件PCU进行了更换,期间发现上输入连杆的前端轴承损坏,维修人员在调节主方向舵电源控制组件时更换了新的控制连杆。后来又在备用方向舵周边发现新的结构损坏,包括前支撑支架和防翻滚轴衬损坏,位于备用方向舵电源控制组件上方和下方的垂直尾翼后缘肋条也均受到损坏,被认为是重大损坏。这些被损坏的结构件均已被拆除并送往NTSB,等待相关部门的检测和试验结论。

在备用方向舵PCU的前支撑架和防转衬套上发现了损伤。备用PCU上方的垂直安定面后缘肋板也断裂了,紧邻着用于安装左侧备用PCU支撑架的三个连接孔中的两个(图2)。备用PCU下方的垂直安定面后缘肋板,在连接备用PCU前支撑架的位置前方,有尺寸达到0.065英寸的凹坑/变形。

而在事发前两天,执行该航班的飞机刚刚在休斯顿进行的一次例行检查中对备用液压驱动系统进行了检测,当中也包括对备用方向舵电源控制组件的测试,结果显示合格。

机组表示,起飞前的FLB有记录偏航阻尼过矫的问题。

According to the flight crew, the captain was the pilot flying and the first officer (FO) was the pilot monitoring. The captain said that while reviewing the logbook before the flight, he noted a previously recorded yaw damper discrepancy described as “the yaw damper over-correcting in flight”. He recalled that the corrective action consisted of resetting a few stall management yaw damper computer codes.

对数据的审查还显示,舵系统的异常行为始于2024年5月23日计划维护后的首次飞行。维修前,偏航阻尼器指令与方向舵踏板运动不一致。然而,在对飞机进行定期维护后,当偏航阻尼器接合时,会注意到方向舵踏板的移动。所有这些振荡的发生都是在偏航阻尼器接合的情况下发生的;当偏航阻尼器在飞行中分离时,或者当飞机在最低设备清单(MEL)上配备偏航阻尼器时,没有观察到异常行为。

A review of the data also showed that the anomalous behavior of the rudder system began on the first flight after a scheduled maintenance on May 23, 2024. Before the maintenance, yaw damper commands did not correspond to rudder pedal movements. However, after scheduled maintenance was performed on the airplane, rudder pedal movements were noted when the yaw damper was engaged. All occurrences of these oscillations occurred with the yaw damper engaged; when the yaw damper was disengaged in-flight, or when the airplane was dispatched with the yaw damper on the minimum equipment list (MEL), the anomalous behavior was not observed.

6月26日、27日这两天,由各方组成的NTSB系统小组在帕克家的工厂召开会议,当着涉事航司和波音公司的面,对从涉事飞机拆下的主用和备用方向舵PCU进行检查和测试。两个PCU均未发现异常,均通过了他们的验收测试程序。

737MAX燃油箱盖板漏油

ISE-28-22-41015

AEROMEXICO在FIX发帖表示发现两块盖板渗漏,531BB & 631BB。在接近531BB时,发现了一个松动的螺钉,该螺钉根据AMM任务28-11-31-400-801拧紧,但泄漏仍在继续。Access 631BB具有正确的扭矩,但存在泄漏。此前从未发生过拆装。

多家航司跟帖:

***美国联合航空公司收到了3架不同飞机燃油面板泄漏的报告。其中一起飞机事故发生在2023年1月27日,一架737MAX-9飞机的燃料面板531AB和531BB被发现泄漏。第二次飞机事故发生在2023年2月2日,一架737MAX-8飞机的燃料面板532AB被发现泄漏。第三起事件发生在2023年3月29日,一架737MAX-9发现631AB号燃油泄漏。在所有三架飞机上,联合航空公司在发现泄漏之前都没有进入油箱或干扰燃油面板。美国联合航空公司为此提交了SR,并要求波音公司展开质量调查。

***新航表示,在737-8飞机加油期间,631BB检修门发现燃油泄漏。对高抗冲击检修门(631AB、631BB、531AB,
531BB、632AB和532AB)如下:
a) 将扭矩扳手设置为60 in-lb(并按扭矩顺序检查燃油检修门631AB、631BB、531AB、531BB、632AB和532AB上每个安装螺栓的扭矩。如果扭矩低于60 in-lb,则扭矩为65±5 in-lb。
631BB检修门的泄漏没有停止。此外,531BB检修门也发现泄漏。油箱已卸油,两个检修门都已拆下并重新安装。
新航已着手对五架具有不同扭矩值(60英寸-磅或30英寸-磅)的737-8飞机进行扭矩检查。如果扭矩低于60 in-lb,则将紧固件拧紧至65±5 in-lb。只有五分之一的飞机通过了扭矩检查。

附加说明:自飞机交付以来,所有这些高抗冲击检修门(631AB、631BB、531AB、531BB、632AB和532AB)均未受到干扰
。此外,737-8高抗冲击检修门的扭矩值为65 In-lb,高于737-800高抗冲击检查门的35 In-lb。

***flydubai(JXB)也经历了中央油箱检修门的燃油泄漏,包括近年来其737MAX机队中的年轻飞机上的531AB、531BB、631AB、631BB,早在生产后的2900个总飞行小时内就发生了泄漏。
报告泄漏的主要原因如下:
1.垫圈损坏P/N:112W8216-1(4次)
2.螺栓松动/扭矩不足(1次)
3.圆顶螺母开裂(1次)
4.橡胶门密封件损坏P/N:112W8214-1(1次)

每个检修门报告燃油泄漏的次数如下:
531AB=4次因垫圈损坏
531BB=2次(1次由于垫圈损坏,另一次由于橡胶门密封)
631AB=1次,因为圆顶螺母出现裂纹
631BB=2次,(1个圆顶螺母开裂,另一个在松动/扭矩不足的螺栓上)

flydubai认为,燃料泄漏不仅具有经济性(除燃料损失外的运营延误/AOG),还具有安全性影响,事故可通过发生燃料泄漏事件的运营商网络向当地监管机构和机场当局报告。
波音公司需要加快对这一问题的坚定审查和解决,因为多家运营商已经在这个FIX论坛上报告了737MAX机队中央油箱检修面板的泄漏。
邀请所有受影响的运营商就这一主题发表评论并分享他们的经验和统计数据,以进行集体努力并加快解决。

从航司报告看,主要是螺栓力矩不足导致的漏油,与此前的盖板乳突裂纹不太一样。机队RTS基本上都有C检,因此该情况不太突出。

[ Back To Top ]