美西南737MAX发生荷兰滚

2024年5月25日,美西南航空公司一架注册号为N8825Q的波音737-8 MAX飞机,在执行从亚利桑那州凤凰城飞往加利福尼亚州奥克兰(美国)的WN-746航班时,载有175名乘客和6名机组人员,在FL320的高度,飞机发生了荷兰翻滚。机组人员得以重新控制飞机,并在大约55分钟后将飞机降落在奥克兰的跑道上。
美国联邦航空局报告称:“飞机经历了倾翻、重新控制和飞行后检查,发现该机方向舵备用PCU受损”,并表示飞机遭受了严重损坏,该事件被评为事故。
这架飞机在奥克兰的地面上一直停留到2024年6月6日,然后被安置在华盛顿州埃弗雷特的波音工厂,6天后仍在埃弗雷特的地面上。
Dutch Roll是飞机因方向稳定性减弱(由垂直尾翼和方向舵提供)而产生的耦合异相运动,飞机围绕其垂直轴和纵轴振荡(耦合偏航和滚转)。

经进一步了解到的情况如下:空中偏航阻尼未脱开,确实发生了荷兰滚,机组反应能正常控制飞机姿态,因此继续执行航班到了目的地。地面自检有低级别27-90001(NO RESPONSE FROM SMYD-2)的信息,BITE测试不通过,SMYD2黑屏,更换了SMYD2。在检查主控PCU的时候发现COTROL ROD有损伤,将PCU和COTROL ROD同步更换。备用PCU支撑结构有裂纹。波音的译码显示1,机组在对准跑道后还在大角度登舵校正,机长表示是地面登舵时偏硬,有顿了一下的感觉,询问副驾有无反向登舵,副驾表示没有;2,备用PCU全程未有作动。飞行阶段气象表示未有大的阵风。

与此相关的有两个材料,一个是737-FTD-27-12002,谈到一个800飞机在经历了小型龙卷风后,方向舵PCU支架受损,导致首班发生方向不受控导致返航,舵面未能发现明显异常。一个是737-SL-27-241-A同样谈到由于狂风的原因,可能导致舵面PCU受损,并且从表面看不到迹象,建议在类似气象时转场。


背景知识:MAX和NG在系统设计上是一致的。方向舵共有两个PCU,一个主PCU,一个备用PCU。PCU是动力控制单元,是控制(垂直)方向舵的执行器。主PCU使用的是A、B系统压力(同时使用)而备用PCU使用备用液压系统提供的备用液压源。FFM监控主PCU压力差值超出标准时,FFM将自动打开备用液压泵,从而给方向舵备用PCU增压,接通备用液压,点亮的STBY RUD ON灯。

阵风阻尼由主用方向舵PCU处理,而备用方向舵PCU中不存在此功能。

当前定期项目如下

2024年7月10日更新

美国全国运输安全委员会NTSB发布5月25日一架美西南737 MAX 8飞行途中发生「荷兰滚」事件初步调查报告,初步报告仅陈述调查中发现的内容,不涉及事故原因及改进建议。

据飞行员回忆,起飞前的滑行、后退和起飞阶段都很顺利。然而,在转向跑道、切换到使用脚蹬操纵后,机长注意到脚蹬有瞬间的僵硬感。

起飞后,飞机在爬升至 34000 英尺的巡航高度期间偶尔出现轻微颠簸。负责操纵的机长称,在达到巡航高度后不久,飞机在穿过一些轻气流时,开始出现轻微荷兰滚现象。他表示,「滚转很稳定,更明显的是频率,只有轻微的摇摆。」振动只持续了几秒钟,自动驾驶仪在整个事件中一直处于接通状态。副驾驶将该事件描述为「飞机尾翼的奇怪运动,结合非常轻微的左右方向舵运动。尾翼的运动很明显,但不过度。」

两名飞行员就此进行了讨论,他们认为在飞机振动期间感觉到方向舵踏板在移动。他们推断,振动不是由湍流而是由飞机本身引起的,因为方向舵踏板不应随偏航阻尼系统移动。

此后经过飞行员与管制员协调,飞行高度下降至32000英尺,期间遇到了类似的飞行条件。飞行员在随后的巡航过程中又经历了几次类似飞机运动,机长感觉到与振动同步的舵杆运动。偏航阻尼灯没有亮起,飞行全程中也没有主警戒告警。

飞机平安抵达目的地后,在滑出跑道后,机长感觉到了与之前飞行中观察到的相同的振动和踏板僵硬。

5月25日事件发生后,美西南对主方向舵电源控制组件PCU进行了更换,期间发现上输入连杆的前端轴承损坏,维修人员在调节主方向舵电源控制组件时更换了新的控制连杆。后来又在备用方向舵周边发现新的结构损坏,包括前支撑支架和防翻滚轴衬损坏,位于备用方向舵电源控制组件上方和下方的垂直尾翼后缘肋条也均受到损坏,被认为是重大损坏。这些被损坏的结构件均已被拆除并送往NTSB,等待相关部门的检测和试验结论。

在备用方向舵PCU的前支撑架和防转衬套上发现了损伤。备用PCU上方的垂直安定面后缘肋板也断裂了,紧邻着用于安装左侧备用PCU支撑架的三个连接孔中的两个(图2)。备用PCU下方的垂直安定面后缘肋板,在连接备用PCU前支撑架的位置前方,有尺寸达到0.065英寸的凹坑/变形。

而在事发前两天,执行该航班的飞机刚刚在休斯顿进行的一次例行检查中对备用液压驱动系统进行了检测,当中也包括对备用方向舵电源控制组件的测试,结果显示合格。

机组表示,起飞前的FLB有记录偏航阻尼过矫的问题。

According to the flight crew, the captain was the pilot flying and the first officer (FO) was the pilot monitoring. The captain said that while reviewing the logbook before the flight, he noted a previously recorded yaw damper discrepancy described as “the yaw damper over-correcting in flight”. He recalled that the corrective action consisted of resetting a few stall management yaw damper computer codes.

对数据的审查还显示,舵系统的异常行为始于2024年5月23日计划维护后的首次飞行。维修前,偏航阻尼器指令与方向舵踏板运动不一致。然而,在对飞机进行定期维护后,当偏航阻尼器接合时,会注意到方向舵踏板的移动。所有这些振荡的发生都是在偏航阻尼器接合的情况下发生的;当偏航阻尼器在飞行中分离时,或者当飞机在最低设备清单(MEL)上配备偏航阻尼器时,没有观察到异常行为。

A review of the data also showed that the anomalous behavior of the rudder system began on the first flight after a scheduled maintenance on May 23, 2024. Before the maintenance, yaw damper commands did not correspond to rudder pedal movements. However, after scheduled maintenance was performed on the airplane, rudder pedal movements were noted when the yaw damper was engaged. All occurrences of these oscillations occurred with the yaw damper engaged; when the yaw damper was disengaged in-flight, or when the airplane was dispatched with the yaw damper on the minimum equipment list (MEL), the anomalous behavior was not observed.

6月26日、27日这两天,由各方组成的NTSB系统小组在帕克家的工厂召开会议,当着涉事航司和波音公司的面,对从涉事飞机拆下的主用和备用方向舵PCU进行检查和测试。两个PCU均未发现异常,均通过了他们的验收测试程序。

737MAX燃油箱盖板漏油

ISE-28-22-41015

AEROMEXICO在FIX发帖表示发现两块盖板渗漏,531BB & 631BB。在接近531BB时,发现了一个松动的螺钉,该螺钉根据AMM任务28-11-31-400-801拧紧,但泄漏仍在继续。Access 631BB具有正确的扭矩,但存在泄漏。此前从未发生过拆装。

多家航司跟帖:

***美国联合航空公司收到了3架不同飞机燃油面板泄漏的报告。其中一起飞机事故发生在2023年1月27日,一架737MAX-9飞机的燃料面板531AB和531BB被发现泄漏。第二次飞机事故发生在2023年2月2日,一架737MAX-8飞机的燃料面板532AB被发现泄漏。第三起事件发生在2023年3月29日,一架737MAX-9发现631AB号燃油泄漏。在所有三架飞机上,联合航空公司在发现泄漏之前都没有进入油箱或干扰燃油面板。美国联合航空公司为此提交了SR,并要求波音公司展开质量调查。

***新航表示,在737-8飞机加油期间,631BB检修门发现燃油泄漏。对高抗冲击检修门(631AB、631BB、531AB,
531BB、632AB和532AB)如下:
a) 将扭矩扳手设置为60 in-lb(并按扭矩顺序检查燃油检修门631AB、631BB、531AB、531BB、632AB和532AB上每个安装螺栓的扭矩。如果扭矩低于60 in-lb,则扭矩为65±5 in-lb。
631BB检修门的泄漏没有停止。此外,531BB检修门也发现泄漏。油箱已卸油,两个检修门都已拆下并重新安装。
新航已着手对五架具有不同扭矩值(60英寸-磅或30英寸-磅)的737-8飞机进行扭矩检查。如果扭矩低于60 in-lb,则将紧固件拧紧至65±5 in-lb。只有五分之一的飞机通过了扭矩检查。

附加说明:自飞机交付以来,所有这些高抗冲击检修门(631AB、631BB、531AB、531BB、632AB和532AB)均未受到干扰
。此外,737-8高抗冲击检修门的扭矩值为65 In-lb,高于737-800高抗冲击检查门的35 In-lb。

***flydubai(JXB)也经历了中央油箱检修门的燃油泄漏,包括近年来其737MAX机队中的年轻飞机上的531AB、531BB、631AB、631BB,早在生产后的2900个总飞行小时内就发生了泄漏。
报告泄漏的主要原因如下:
1.垫圈损坏P/N:112W8216-1(4次)
2.螺栓松动/扭矩不足(1次)
3.圆顶螺母开裂(1次)
4.橡胶门密封件损坏P/N:112W8214-1(1次)

每个检修门报告燃油泄漏的次数如下:
531AB=4次因垫圈损坏
531BB=2次(1次由于垫圈损坏,另一次由于橡胶门密封)
631AB=1次,因为圆顶螺母出现裂纹
631BB=2次,(1个圆顶螺母开裂,另一个在松动/扭矩不足的螺栓上)

flydubai认为,燃料泄漏不仅具有经济性(除燃料损失外的运营延误/AOG),还具有安全性影响,事故可通过发生燃料泄漏事件的运营商网络向当地监管机构和机场当局报告。
波音公司需要加快对这一问题的坚定审查和解决,因为多家运营商已经在这个FIX论坛上报告了737MAX机队中央油箱检修面板的泄漏。
邀请所有受影响的运营商就这一主题发表评论并分享他们的经验和统计数据,以进行集体努力并加快解决。

从航司报告看,主要是螺栓力矩不足导致的漏油,与此前的盖板乳突裂纹不太一样。机队RTS基本上都有C检,因此该情况不太突出。

737MAX因滑油压力指示问题导致空停

外部案例:

2024年4月有737MAX飞机((TSN/CSN:4615/1542)反映,在起飞约1.5小时后,空中右发出现低滑油压力指示及警告(滑油量正常),机组关停右发,飞机单发安全备降。地面检查没有滑油渗漏,磁堵检查未发现碎屑,OPTS传感器量线检查不在手册范围内。经检查是由于滑油压力传感器指示问题导致的。

局方发布的信息为:B737-8/B-1XX0飞机执行(乌鲁木齐-上海虹桥),巡航阶段2发出现低滑油压力指示及警告(滑油量正常),机组关停2发,飞机备降敦煌,安全落地。排故发现有故障代码79-41833(EEC A 通道探测到发动机滑油压力传感器不在范围内),测量发现滑油压力温度传感器内部阻值异常(断路)。初步判断本次空停原因为滑油压力温度传感器故障。该发动机型号为LEAP-1B27,共使用4616小时/1543循环。该滑油压力温度传感器件号为PT9902-261-40077,共使用4616小时/1543循环。

基本原理:

滑油压力指示系统在MDS发动机指示显示屏上显示发动机滑油压力数据。组合式机油压力温度传感器(OPTS)测量附件齿轮箱(AGB)入口处的机油压力。OPTS有两个滑油压力传感器元件。每个元件通过单独的连接器与一个EEC通道相连。OPTS安装在AGB正面的适配器上。OPTS还有滑油温度传感器。OPTS的滑油压力传感器部分是一个双应变片型压力传感器。传感器中的每个元件都接收激励输入,并将输出发送到相关的EEC通道。EEC将该信号改变为ARINC 429信号并将其发送到DPC。DPC在发动机指示显示屏上显示机油压力。滑油压力显示在两个垂直指示灯和两个数字显示屏上。指针显示每个垂直指示器上的油压,单位为psi压差(psid)。

指示器有两个索引标记。琥珀色索引标记显示滑油压力琥珀色极限。红色索引标记显示滑油压力红线限制。滑油压力(低)琥珀色限值定义了发动机润滑系统的警示工作压力范围。滑油压力(低)琥珀色限值在列刻度上显示为琥珀色(黄色)勾号。如果滑油压力低于滑油压力(低)琥珀色限值但高于滑油压力(高)红线限值,MDS会将滑油压力数字读数和轮廓框的颜色更改为琥珀色。当超越不再存在时,MDS将恢复到油压数字读数和轮廓框的正常颜色指示。

滑油压力(低)红线定义了发动机润滑系统低于正常工作压力的范围。滑油压力(低)红线限制在列刻度上显示为红色勾号。如果发动机滑油压力低于滑油压力(低)红线限值,MDS会将滑油压力数字读数和轮廓框的颜色更改为红色。当超过限值时,MDS会恢复到滑油压力数字读出和轮廓框中的正常颜色指示。当滑油压力低于红线限制时,琥珀色LOW OIL PRESSURE(滑油压力低)信息将闪烁10秒钟,然后持续显示。DPC将不允许起飞和着陆的闪光模式。


红区和琥珀色区域的压力要求如下图所示。

QRH措施非常简单,直接关车。

经与厂家进一步沟通,厂家通报了另外两起事件:

25 Apr 2024, (TSN/CSN:3779/1341)在起飞后机组注意到左发低压警告,机组关车。检查发现滑油量正常,没有外漏,ODMS和回油滤没有碎屑,译码显示滑油压力存在波动,OPT传感器的B通道存在问题。HJ6A/HJ6B线束没有发现问题。

还有一起,出现了3秒钟的低压警告闪烁,后正常,地面检查有相关SMT信息,更换传感器后正常。机组未关车。

从现有信息看,传感器指示值在触发低压前存在一定的波动特征,为监控提供了可能:

且监控到了相关的信息,起因类信息为79-41824,其他类信息为 滑油指示到黄区和红区的结果类信息。

其中需要解释的是,针对滑油量传感器A、B通道的信息,EEC使用SST值来定义,一致有效为1,有效不一致为4,某通道失效后为5。如下表所示。也就是说当一致有效或判定某个通道失效的情况,滑油压力指示都会是正常的,而当不一致,又无法判定某个通道失效的时候,就会存在不能确认哪个值为准的情况,那么就会选低的值作为输出,从而带来这一隐患。

针对该情况,明确了几个管控措施的调整:

1、对压力传感器SMT信息进行收紧,包括修改手册和改版MT(已完成);

2,提高压力传感器的AHM监控等级值到90,邮件通知中加NO GO警示(已完成),遇该监控信息需立即排故;

3,开发监控,AHM和DAR进行预防性捕获,提供机上打印提醒;

4,下发要情通报,发客户飞行学习;

5,制作案例和当前管控措施材料,上班组月度培训学习。

6,跟踪厂家进一步措施。

2024年10月25日信息更新

1、厂家已完成2起空停事件的调查,发现压力传感器电路板焊接点处的1根导线断裂,导致压力指示故障。

2、厂家在2019年也对OPT传感器指示故障(非事件相关)进行过调查,当时也发现电路板焊接点处的导线断裂(与空停事件OPT调查发现相同),原因确定为OPT传感器制造时,导线剥线工艺存在问题。为消除此问题,厂家于2019年改进提升了导线制造工艺。

3、发生空停事件的OPT传感器均为工艺改进前生产的。

4、SB 79-0014只改进了OPT传感器中的温度感应元件,而压力感应元件没有改变,但由于SB是2022年之后发布的,所以POST SB 79-0014传感器都是工艺改进后生产的。

5、工艺改进后的OPT传感器仅有1次报告与压力指示问题有关联,但该传感器的X射线检查和ATP测试均无故障迹象。说明工艺改进后生产的OPT传感器压力指示的可靠性有明显提升。

6、目前仅能确定SB之前和SB之后的OPT传感器的分布,如下

集团LEAP-1B机队PRE SB 79-0014 OPT传感器的统计数据
 福航股份祥鹏可用库
改进前43184
改进后 1  
厂家无法确定   1

7、LEAP-1A发动机滑油压力指示的取值逻辑为选取A/B通道中压力更高的值,而且1A发动机比1B多1个低滑油压力电门,1A发动机同时采集OPT传感器和低滑油压力电门数据用于低滑油压力指示,故综合评估认为,OPT传感器压力指示波动故障不会导致1A发动机低滑油压力虚假警告。

导线工艺改进后生产的OPT传感器压力指示可靠性有较大提升,能有效减少或消除压力指示波动故障。

加拿大航空737MAX货仓火警

2024年4月9日,加拿大航空公司一架注册为C-FSIP的波音737-8 MAX执行AC-997航班,从墨西哥城(墨西哥)飞往不列颠哥伦比亚省温哥华(加拿大),载有122名乘客和6名机组人员,在飞往美国爱达荷州博伊西西南约120nm处的FL380航班途中,机组人员收到货物烟雾指示,决定改飞博伊西。大约40分钟后,飞机安全降落在博伊西10R跑道上。一架替换的波音737-8 MAX飞机抵达温哥华,延误约8小时。事故飞机在博伊西的地面上停留了大约8个小时,然后回到温哥华,在温哥华降落大约13个小时后仍在温哥华的地面上。该航空公司报告称,是传感器故障导致航班备降。

Flydubai的737MAX飞机无法完全收起起落架

2024年4月7日,一架注册号为A6-FKH的Flydubai波音737-8 MAX从迪拜(阿拉伯联合酋长国)飞往多哈(卡塔尔)执行FZ-17航班,当时机组人员正在爬出迪拜30L跑道,在9000英尺处停止了爬升,由于无法完全收回起落架,决定返回迪拜。飞机在起飞约25分钟后安全降落在迪拜30L跑道上。一架注册号为A6-FKB的替代波音737-8 MAX飞机抵达多哈,延误了约3:50小时。事故飞机在降落约18小时后返回服务。

可能性猜测:1,人工放面板未关好;2,液路问题。

[ Back To Top ]