737 MAX飞机的FAMV(风扇空气调节阀)故障调查

WTT会议

一、背景

  • FAMV功能:FAMV控制风扇空气流经预冷器,以实现引气管道温度的目标设定点。
  • 安装位置:FAMV安装在发动机顶部12点钟位置,位于预冷器的前侧。
  • 数量:每架飞机安装2个FAMV。

二、失效原因

1、-3型FAMV早期失效原因

  • 主要由于执行器密封件撕裂。(-4后就没有再发现这一问题)

2、-4型FAMV失效原因

  • RVDT信号超出范围(MM 36-12030 / 36-12031)
    • 零位故障逻辑。
  • FAMV未处于指令位置(MM 36-12020 / 36-12021)
    • 原因1:由于扭矩电机流量放大器(TMFA)阀芯泄漏导致阀门打开缓慢(约占67%的FAMV未处于指令位置故障)。
    • 外来物碎片(FOD)阻止阀芯关闭。
    • 阀芯杆磨损导致其卡在打开位置。
    • 原因2:RVDT显示阀门处于关闭或接近关闭位置,而温度数据表明阀门实际处于打开位置(约占33%的FAMV未处于指令位置故障)。
    • 通常发生在滑出期间。
    • 根本原因尚不明确。

原因一

原因二:

三、临时/缓解措施

  • 继续使用波音飞机健康管理(AHM)警报,主动更换-3型FAMV。
  • 仅在飞机出现故障(如状态消息或维护消息)时移除-4型FAMV。
  • 通过地面测试清除FAMV RVDT零位故障,并根据IFIM保持FAMV在机上。
  • MOM-MOM-23-0991-01B详细描述了故障条件,并提供了在计划维护任务(SMT)检查期间持续清除故障的理由。

四、解决措施

1、针对RVDT信号超出范围(MM 36-12030 / 36-12031)

  • 在-003集成空气系统控制器(IASC)软件中修正了故障逻辑。

2、针对FAMV未处于指令位置(MM 36-12020 / 36-12021)

  • 措施1:评估将伺服的所有供应空气重新路由通过现有过滤器的变更。
    • 完成验证测试,目标日期为2025年7月。
  • 措施2:对TMFA阀芯杆磨损进行表征,已完成(2025年4月24日)。
    • 评估从阀芯台阶面区域去除材料以消除卡阻风险。
    • 确定最佳解决方案,目标日期为2025年8月。

五、最终行动/解决方案

  • MM 36-12030 / 36-12031“FAMV RVDT信号超出范围”
  • 发布-003 IASC软件。
  • MM 36-12020 / 36-12021“FAMV未处于指令位置”
  • 待确定根本原因和纠正措施。

六、备件计划

  • 当前有足够的-4型FAMV零部件库存以满足当前需求。
  • 确定阀门打开缓慢的设计解决方案,目标日期为2025年8月。
  • 建立FAMV未处于指令位置的项目工作方案,已完成(2024年9月)。
  • 完成过滤器测试,目标日期为2025年7月。

七、时间表

  • -003 IASC服务通告(SB):2024年11月。
  • 目标完成时间:2026年第一季度。

737MAX升降舵主臂的轴承损伤

FIX ISO-55-25-49536

描述:TUI 航空公司在轴承 BACB10JG12AZJ03G 的内孔中发现了划痕损伤,该轴承是与升降舵组件 PN 183A0103-719 相关联的主安装件 PN 183A5600-713 的一部分。

背景:

在以下升降舵组件中发现了划痕轴承 PN BACB10JG12AZJ03G:

左侧升降舵组件 PN 183A0103-722 序列号 006977(总飞行小时:16180.50 小时,循环数:5220 次);原装的升降舵组件。

请参阅附图查看发现位置。轴承 PN BACB10JG12AZJ03G 在轴承内表面发现划痕,该位置安装了来自升降舵控制推杆组件 PN 251A2010-1 的螺栓 PN 69-44683-3,作为主臂 183A5622-754 的一部分安装在轴承 PN BACB10JG12AZJ03G 内。划痕损伤位于螺栓 PN 69-44683-3 的螺母一侧。

另一种发现的损伤类型是轴承 PN BACB10JG12AZJ03G 的密封圈失效,见附图(在左侧升降舵组件 PN 183A0103-721 序列号 006985(总飞行小时:16180.50 小时,循环数:5220 次)上发现;自飞机生产以来一直安装的升降舵组件)。

零部件信息:轴承 PN BACB10JG12AZJ03G,是升降舵主臂 PN 183A5600-713(左侧)、183A5600-715(左侧)、183A5600-714(右侧)、183A5600-716(右侧)的一部分。

向其他 MAX 机队运营商请求反馈:

TUI 航空公司想询问机队中是否有其他 MAX 机队运营商也注意到了轴承 PN BACB10JG12AZJ03G 的这种划痕损伤?或者是否有其他类型的损伤被报告过关于这个轴承 PN BACB10JG12AZJ03G(例如密封圈失效等)?

信息 – 波音标准计算机化飞机性能(SCAP)数据库错误导致的非正常构型着陆距离计算

MOM-MOM-25-0112-01B

摘要
波音公司发现737MAX、747-8和747-400飞机型号的空速不可靠非正常构型着陆距离计算存在问题。该问题仅适用于使用受影响的波音标准计算机化飞机性能(SCAP)数据库的应用程序,例如波音机载性能工具(OPT)和性能工程师工具(PET)。飞行机组操作手册(FCOM)和快速参考手册(QRH)中的飞行中非正常着陆性能数据表不受影响。

描述
波音公司发现,当使用受影响的波音 SCAP 数据库时,空速不可靠非正常构型着陆距离计算存在潜在安全问题。这些计算可能会得出比实际所需着陆距离更短的数值。
波音 SCAP 数据库在不可靠指示空速的情况下错误地调整了 VREF 增量的着陆距离,而此时由于指示空速不可靠,VREF 增量并不适用。当指示空速不可靠时,程序是按照快速参考手册(QRH)非正常着陆检查单中的指定俯仰和功率剖面飞行。
该问题适用于以下波音 SCAP 数据库的所有推力等级和认证基础:
• 737-8 和 737-9 起飞和着陆数据库。
• 747-400 非正常着陆构型数据库。
• 747-8 起飞和着陆数据库。
当同时输入以下所有选项时,会出现错误:
• 空速不可靠非正常着陆(NNL)构型。
• 固定拉平距离。
• VREF 增量大于零。
受此问题影响的应用程序包括波音机载性能工具(OPT)、性能工程师工具(PET)和着陆分析软件(LAND)。此外,任何使用受影响波音 SCAP 数据库的运营商或第三方应用程序也将受到影响。

期望措施
波音建议将 VREF 增量设置为零,或者在空速不可靠非正常着陆构型中不使用 VREF 增量。
注意:当输入的 VREF 增量为零时,着陆距离将反映 VREF+10 的着陆速度,这与快速参考手册(QRH)中空速不可靠非正常构型(NNC)的俯仰和功率剖面一致。
只要制定了确保 VREF 增量为零或未输入 VREF 增量的程序,就可以设置固定的拉平距离。
当性能分析应用程序支持时,波音建议在计算空速不可靠非正常着陆构型性能时应用一条咨询消息。该咨询消息应告知用户输入 VREF 增量为零或不输入 VREF 增量。
此选项从 OPT 4.90 版本开始提供。OPT 启用了针对每种非正常情况定制消息的功能。这些消息的字符限制为 255 个,将在飞行机组点击所选非正常构型的“计算”按钮后显示。要为任何 NNC 向飞行机组显示消息,请按照以下步骤操作:
• 点击策略与配置选项(管理策略与配置选项)。
• 点击“管理非正常最大侧风和警报”。
• 选择“飞机类型”。
• 选择“飞机构型”。
• 在特定非正常情况下的“NNC 警告消息”中输入所需消息。
• 使用 OPT 4.90 或更高版本重新构建您的 OPT 组件。

解决方案
受影响的 SCAP 数据库将进行更新,当输入大于零的 VREF 增量时,将显示以下错误消息:
“空速不可靠非正常构型(NNC)不允许使用大于零的 VREF 增量。”
以下是受影响 SCAP 数据库更新的计划发布日期:
• 737MAX:2025 年 5 月 31 日。
• 747-8:2025 年 6 月 30 日。
• 747-400:2025 年 7 月 31 日。

737MAX引气压力和N1参数摆动

HNA-HNA-25-0328

2025年2月,有MAX飞机反映右发N1转速在巡航阶段有跳动,在1%以内。持续大概20秒。 N1转速跳动持续时,引气压力也有大幅变化。

译码数据显示

将数据发波音后,波音给出如下答复:

此问题为影响737MAX的已知问题。波音公司建议参考737MAX-FTD-36-18001和737MAX-FTD-36-19001以获取更多背景信息。针对引气压力波动问题,波音公司已发布服务信函(SL)737-SL-36-039和操作手册公告(OMB)TBC-10 R1,通知737 MAX运营商在飞行中可能出现的引气系统管道压力波动情况,并表示目前正在制定解决方案。服务信函建议运营商在收到飞行员关于引气压力波动的报告时,不要采取维护行动。操作手册公告指出,如果观察到引气压力波动,机组人员无需采取任何行动。

背景知识:

737MAX-FTD-36-18001/737MAX-FTD-36-19001

对于引气压力摆动,波音发布了737-SL-36-039和TBC-10 R1,如果机组观察到引气压力摆动,无需采取任何行动。IFIM task36-10-00-810-832建议无需维护,除非触发了维护消息。波音计划更新IASC软件来解决此问题。

737-SL-36-039

737-8 飞机出现了引气系统管道压力波动的现象。这些波动在起飞或爬升推力设置下被观察到,无论发动机或机翼防冰系统是开启还是关闭状态。此外,在发动机防冰系统开启且机翼防冰系统关闭的较低推力设置下,也观察到了这种波动现象。在波动期间,位于前顶板上的双管道压力指示器上的左右指针会以大约 +/- 10 psi 的幅度相互异相波动。这种波动现象是由发动机引气阀门与电子控制的流量控制阀(eFCV)之间未预料到的相互作用引起的。

点评:从系统工作角度来说,波音为降低油耗,将引气控制和增压需求纳为一体化考量。从而在增压满足的情况下,减少引气的无效供给,但实际上从引气-空调-增压的整个链条过长,这个链条上的任一个主控参数的波动都可能带来整个链条上的部件的响应。当某种特定的情况下,刚好进入到周期性的共频振荡的时候,从直接可见表象上就表现为引气压力和N1的摆动。实际上组件活门,包括外流活门应该都会有波动。只有打破这一循环才能改出,或者是被动,或者是主动。应该主动重开组件或者重开引气,应该就可以改出。如果短期再次发生,建议更换部件。

737MAX前位置灯罩风蚀损伤

ISI-33-25-48736

随着737MAX机队的持续运营,X航最近发现多架737MAX飞机的前位灯(FPL)透镜出现了不同程度的侵蚀。
2024年11月10日,B-1117飞机的左前位灯透镜在日常运营中甚至直接破裂,这也导致飞机难以放行。

背景:
前位灯透镜在长时间使用后会出现一定程度的侵蚀。严重的侵蚀最终会导致破裂,从而影响飞机机翼结构的完整性,并在航线运营中导致飞机难以放行。
对于737NG机型,波音和霍尼韦尔已发布指南APB737-SL-010,以帮助运营商确定需要更换透镜的侵蚀程度。
然而,对于737MAX机型,波音和供应商(Astronics)均未对此问题作出回应。
X航希望了解其他737MAX运营商是否遇到过类似问题,以及您对侵蚀/破裂问题的看法和可以采取的预防措施。
X航也希望波音能够评估并将前位灯透镜纳入737NG和737MAX的DDG(放行偏差指南)项目中,以便于快速放行。

部件信息:
左前位灯:84088-1 透镜:87-04795-001
右前位灯:84088-2 透镜:87-04796-001

[ Back To Top ]