737内侧主轮轮毂盖裂纹

737NG-FTD-32-07007 & HNA-HNA-25-0888-03C

一、背景

737NG和MAX内侧主轮轮毂盖(P/N: 277A6110-1,子部件-3)是由玻璃纤维增强环氧化合物制成的,由三个安装螺栓固定在主轮上,裂纹通常发生在接耳的螺钉安装孔处或接耳与轮毂盖之间的过渡区域,波音分析了产生裂纹的原因并进行了一些破坏性测试后发现接耳很难完全与轮毂盖分离(原因是实验表明在玻璃纤维裂纹到某一点时会自动停止),故提供了维护建议和针对有裂纹的内侧轮毂盖放行标准。

内侧主轮轮毂保护盖组件(HUBCAP ASSY件号277A6110-1), 包括单独的轮毂盖(HUBCAP件号277A6110-3)、连接器、保护盖和配套紧固件等。

二、波音快速处置建议

1、接耳与轮毂盖过渡区域裂纹

三个接耳与轮毂盖过渡区域有任意数量有裂纹可以正常使用。

2、螺钉安装孔裂纹

三个安装孔中任意数量的安装孔存在裂纹都可以正常使用,只要安装螺钉时将原配的BACW10BP4CD垫片更换为大尺寸的垫片。(如NASM970-4、AN970-4或类似件号的垫片)

3、螺钉安装孔和接耳过渡区域同时有裂纹的情况,也可以在更换垫片后正常使用(参见条目1和2)。

4、过渡区域存在断开完全分离的情况,则该轮毂盖不可以使用。

三、使用提醒

1、波音仅对NG和CL发布有FTD,通过HNA-HNA-25-0888-03C,波音NTO可以运用于MAX飞机上装有P/N: 277A6110-1/-3的轮毂盖。

2、AMM的拆装手册中仅有轮毂盖组件(P/N: 277A6110-1)的拆装步骤。在可否单独更换轮毂盖子部件277A6110-3的问题上,在和波音咨询后,波音NTO可以单独更换。这样可以减少组件中其他完好部件的浪费。在单独更换轮毂盖277A6110-3时需遵循以下两点(来源于图纸):

1)确保两颗安装螺钉NAS6303-2H的磅紧力矩为30-35 in-lbs;

2)参考BAC5108规范打好双股保险丝。

3、厂家在2015年年底之后对原有玻璃纤维材料做了部分改进。并且在这之后交付的新飞机上随机安装的也都是新构型的轮毂盖,新旧构型轮毂盖的件号不变。(感觉效果不明显)

4、图纸要求内侧主轮轮毂盖需要同时带有两个件号(277A6110-1和277A6110-3)的标识。如只有一个,可参考SOPM 20-50-10或者BAC5307进行补充。

Mark the part with the assembly part number via the rubber stamping method described in SOPM 20-50-10. Alternatively, SOPM 20-50-10 permits part marking to be done with permanent ink pens listed in BAC5307 section 5.1.1.2.

控制钢索问题和解决路径

WTT会议

波音公司已识别737NG/MAX飞机控制钢索的多个关键问题,并制定了详细的短期和长期解决方案。通过调整材料等级、优化供应链和更新操作规范,波音致力于恢复系统的可靠性和性能,同时减少对运营商的维护负担。

一、Grade B钢索采购问题

1、失效模式:由于三级供应商的热处理工艺不一致,导致Grade B和Grade D材料的耐久性不足,无法满足波音生产需求。

2、问题影响:Grade B材料的锌含量较低(0.025-0.060 oz/sqft),导致钢索松弛,增加维护负担,影响飞机的操控系统性能。

3、受影响的钢索

  • Aileron: AA,AB
  • Rudder: RA,RB
  • Elevator: EA,EB
  • Horizontal Stabilizer: STA,STB
  • Trailing Edge Flaps: WFA,WFB
  • Landing Gear: LGB1,LGB2

4、解决措施

  • 短期措施
    • 2025年6月开始测试Grade D材料,2026年3月完成后续测试,2026年5月开始生产切换。
    • 2025年8月从备用供应商获取首批Grade B试验材料,2026年6月开始Grade B生产试验。
  • 长期措施:波音正在优化供应链稳定性,计划最终恢复使用Grade B钢索。

二、安定面转环调整问题

1、失效模式:运营人在执行安定面钢索(STA和STB)的重新磅紧的服务信函(737-SL-27-307)时,发现Grade K钢索的下转环调整余量(C尺寸)不足,导致无法完成调整。

2、问题影响:可能导致安定面控制精度下降,影响飞行安全。

3、调整措施

  • 2024年8月15日更新工厂 rigging 文档,将C尺寸范围调整为12.25-15.25英寸。
  • 2025年10月15日(NG)和2025年9月15日(MAX)在AMM中添加注释,推荐操作员在安装新钢索时使用12.25-15.25英寸的C尺寸。
  • 2025年7月开始生产缩短长度的Grade K安定面控制钢索:
    • 737-800/8/8200:缩短1.03英寸,额外缩短1.00英寸;
    • 737-900/9:缩短0.54英寸,额外缩短1.04英寸;
    • 737-7:缩短1.07英寸;
    • 737-700:缩短1.00英寸。

三、刹车系统性能问题

1、失效模式:起落架控制钢索(LGB1和LGB2)的松弛导致刹车计量活门位置异常,增加内部泄漏,从而影响停车刹车的蓄能器泄压速率。

2、问题影响:可能导致刹车系统性能下降,影响飞行安全。

3、解决措施

加速Grade D材料在刹车系统的投产时间,以减少钢索松弛对刹车性能的影响。

737NG主起落架收放作动筒裂纹

ISO-32-25-49357

自2024年以来,JWC根据MPD(首次拆卸)的要求,将5套起落架送至MRO进行大修。在起落架大修过程中,MRO按照SOPM 20-20-01的标准操作程序,通过磁粉检测发现主起落架作动筒筒体(273A2102-9)表面出现了一些细小的裂纹。MRO按照CMM 32-32-37修理方案2-1对这些筒体进行了打磨修复,试图去除裂纹,然而裂纹仍然存在。由于修复成本过高,这些作动筒已被报废。详细情况请查看附带的照片。

截至目前,已记录了以下三起案例:

  1. 部件编号:273A2101-101;序列号:2101/11224A;总寿命/循环寿命:27641/14894;
  2. 部件编号:273A2101-101;序列号:2101/11225A;总寿命/循环寿命:27641/14894;
  3. 部件编号:273A2101-101;序列号:2101/11327A;总寿命/循环寿命:27723/14886;

注意:第1项和第2项来自同一架飞机。

JWC认为缺陷率很高。

询问:JWC希望其他运营商能够分享他们遇到类似问题的数据。是否有可行的建议措施可以避免此类缺陷?

部件信息:273A2101-101 供应商信息:波音公司。

九元航跟帖

在LG首次大修期间也遇到了类似的问题,发现一个主起落架作动筒外壳(件号:273A2101-101,序列号:2101/12151A)存在一些微小的裂纹。九元航认为这不是一个孤立的问题,希望遇到相同问题的航空公司能够分享他们的经验。

储压器隔离活门本体堵盖漏油

外部案例

2025年01月,有航司737-800飞机空中反馈B系统液压油量指示为0,备降。排故检查发现储压器隔离活门本体漏油。

1、漏油点判断为储压器隔离活门本体的堵盖,漏油点堵盖的保险在位,将堵盖拆下后,对封圈进行检查,封圈未发现目视可见损伤,堵盖本体未发现有目视可见损伤。检查B系统EMDP、EDP壳体回油滤,B系统回油滤正常无碎屑;更换蓄压器隔离活门、B系统EDP与B系统EMDP。

2、依据故障现象及排故判断漏油点为储压器隔离活门本体的堵盖。

3、查询机队近两年故障4起。

4、MP要求每三个月检查储压器保持时间,步骤中涉及整个储压器系统的渗漏检查。

点评:

1、机队历史上发生过储压器隔离活门漏油的案例。但更换案例相对很少,差不多一年一个。多是为排除刹车压力无法保持更换。从机队开展全面漏油的检查以来,差不多一季度有5个报告挂油的事件。

2、工作原理

在正常情况下,液压压力分别施加到 ALT(PRESS A)和 NORM(PRESS B)端口,而 BRAKE 端口与 RET(回流)端口相连。当 NORM 端口的液压压力降至 1300 psi 时,由于 NORM 端口和 ALT 端口之间的压力差,活塞和滑块会移动。这将 ALT 端口连接到 BRAKE 端口,用于备用系统操作。SWITCH 端口向指示系统发送信号,显示备用系统正在运行。

3、因为封圈不受压降和频繁波动的影响,是否存在老龄化特征存疑。

关于737NG飞机测试时AACU自检有A/B CNTL信息

自有案例+网络公众号

2025年3月,有飞机执行 AMM32-42-00-720-801 Antiskid/Autobrake Control Unit Operational Test不通过,有A/B CNTL信息, 驾驶舱将自动刹车选择1/2/3/MAX/RTO, 自动刹车不预位灯均不亮, 自检AACU完成控制测试也有A/B CNTL信息, 完成Autobrake Pressure Control Module Functional Test结果正常(未连接压力表读取刹车压力)。对穿面板和AACU无果。依据AMM32-42-00完成Autobrake Pressure Control Module Functional Test,测试正常。后依据AMM 32-42-81更换自动刹车压力控制组件正常。

一、“A/B CNTL”从FIM上来看,这个信息表示:“自动刹车控制活门组件上的电磁活门压力电门探测到了高压信号,控制活门也接收到了控制信号,但控制活门压力电门探测到了低压信号,从而导致AACU自检出现“A/B CNTL”信息”。

二、基本原理

从自动刹车压力控制组件示意图分析:当AACU在自检时,会分别发送信号给电磁活门和控制活门,来控制两个活门的第一级打开(FIRST STAGE)。根据SDS介绍,控制活门是一个精确的计量活门,其活门开度受AACU的指令控制。通过SSM,我们可以发现,AACU通过控制控制活门的伺服活门的开度,来调节二级(SECOND STAGE)活门的开度,从而达到控制输出压力的目的。

其中AACU的输入电流大小,通过计算满足函数Y=450X-600。根据737NG-FTD-32-17004中描述,AACU的BITE中的控制测试部分,其关键步骤是:AACU提供一个可以产生大约1000PSI的控制信号给自动刹车活门组件的控制活门(经过计算,该电流大约为3.56mA),理想情况下(没有误差的情况),控制活门的输出就应该为1000PSI,控制活门压力电门(或者AB伺服活门压力电门)感受到1000PSI就会作动,一旦该压力电门作动,AACU就认为控制活门工作是正常的。

同时,FTD中也解释了(上图红框部分):由于伺服活门的作动存在一定的误差(精确度降低)和伺服活门压力电门作动时也存在误差(本来既定的门槛值为1000PSI,但实际可能1100PSI才能闭合),导致输入既定的3.59mA时(FTD标注的电流为3.59mA,为什么是3.59mA,猜想设计师已经考虑到误差了,但是没想到考虑的误差还不够),实际的输出压力达不到1000PSI,伺服活门压力电门(1000PSI)没有闭合,AACU认为自动刹车控制活门故障。

三、临时措施

根据737NG-FTD-32-17004中的描述,波音已经有了改进方案:对AACU升级,将原来的3.59mA的测试电流值调高。但是,目前没有实施。

波音建议,当出现这个信息时,在AACU上多做几次测试,伺服活门压力电门(1000PSI)经过几次测试后可能会正常作动。或者,依据AMM32-42-00对自动刹车压力控制组件进行功能测试来取代AACU的操作测试。如果上面两种方法还不行,依据FIM进行排故。

为什么波音推荐通过对自动刹车压力控制组件进行功能测试来取代AACU的操作测试呢?因为自动刹车压力控制组在进行功能测试时,选择电门选择在1、2、3、MAX挡位时AACU产生的电流会会大于3.59mA,输出的压力也大于1000PSI,伺服活门压力电门(1000PSI)一定会作动。

那么问题来了,功能测试相对较为复杂,需要在刹车组件上连接压力表,而在实际的操作中,存在一定的困难,比如飞机在外站不在基地时,外站很少会配备这种压力表。那么,在没有压力表的情况下,我们还能不能排故呢?答案是肯定的。首先,我们在AACU上进行操作测试,如果有其他代码(A/B CNTL除外),则依据FIM进行排故;如果AACU没有其他故障信息,测试时仅有A/B CNTL信息,这很有可能是个间歇性偶发故障。如果在多次AACU测试后仍有A/B CNTL信息时,我们可以通过自动刹车压力控制组的功能测试来辅助判断,可以不用连接压力表。功能测试测试的是:选择电门选择在1、2、3、MAX挡位后,输出压力是否符合要求。而我们仅想让自动刹车活门组件的输出压力大于1000PSI,以此来判断AB伺服活门压力电门是否作动而已,功能测试输出的压力完全符合这个需求。

当我们将挡位选择在1档或者2档时,如果AACU显示BRK A/B1或者BRK A/B2时,即使我们不连接压力表确认压力,我们也能判断出伺服活门压力电门(1000PSI)是可以正常作动的。

四、小结

根本原因看,应该还是压力电门问题,或者线圈阻值漂移。

AACU上做测试时,当AACU操作测试没有其他故障信息,并且驾驶舱无故障效应,如果AACU仅有A/B CNTL信息时,我们可以多在AACU做几遍测试。若仍有A/B CNTL信息,可以通过自动刹车活门组件的功能测试(可以不连接压力表)来辅助判断伺服活门压力电门(1000PSI)是否能正常作动,如果功能测试判断压力电门可以正常作动,很有可能是间歇性偶发故障临时措施可以多做测试卡能否通过。

最终还是更换部件。

[ Back To Top ]