关于SINGLE CRAB LANDING的解释

一、Crab Landing操作原理:

在有侧风的情况下,飞机沿着跑道的中心线下降,并且将机头稍为转往向风的方向,保持飞机在侧风之下的飞行方向与跑度保持平衡,但同时飞机的姿态却会与跑度形成一个夹角,称为蟹型着陆。基本上就是如下图的一个过程。有些也叫CROSSWIND LANDING。

SINGLE CRAB LANDING:自定义的一种操作姿态,即蟹形着陆时,还伴随有单起落架着陆的情形。类似于以下这种形态。

二、监控背景:

由于MBD碳刹车主轮为悬臂梁设计,内半轮毂不直接受力,飞机落地后的所有冲击力均由外半轮毂承受,在较大的落地载荷(较大滚转角和横向加速度)的情况下,可能出现主轮内轴承位移等损伤,导致主轮和刹车损伤和卡滞。通常是在侧风的情况下着陆调整姿态时出现较大滚转角和横向加速度。(参见对应可靠性分析)

三、预防措施:

基于历史案例的数据.开发了Single crab landing,实时监控飞机落地时的滚转角和横向加速度(基本上认为滚转角的绝对值大于1.6度,同时横向过载值的绝对值lateral load大于0.25可能产生损伤),超过门槛值后则触发警告,以便及时对机轮和刹车进行检查,识别可能出现的损伤并及时处置。

四、历史案例汇总:

1、2017年5月16日,B15*9飞机左外主轮轮毂中心毂环切,译码数据回溯发现,前一日Single Crab Landing ,滚转角-2.1(ROLL逆时针),横向载荷0.377,垂直过载1.17。

2、2020年3月25日,B-20*F飞机右外主轮中心毂被环切,译码数据回溯发现,前段Single Crab Landing ,滚转角2.6(ROLL顺时针),横向载荷-0.477,垂直过载1.43。

3、2020年6月9日,B-69*5左内刹车跳槽,译码数据回溯发现横向过载-0.229的,最大滚转角-1.4,垂直过载1.17。

4、2020年7月12日,B-20*V右外主轮在第二级跳槽,11号有一段看到,横向过载-0.253的,最大滚转角2.1,垂直过载1.42。

5、2020年外部航司环切案例,译码数据回溯发现横向过载-0.278的,最大滚转角-4.2,垂直过载1.06。

6、2025年4月13日,B-79*0飞右外主轮有热熔冒烟,译码数据回溯发现,前段Single Crab Landing ,横向过载0.299,最大5.63的滚转角。

7、2025年5月9日,B-62*8飞机触发告警,译码看滚转角最大1.58,横向加速度最大0.407。完成主轮更换,发回调查。

冷凝器裂纹

冷凝气裂纹,从数据表明,被认为是和时间相关的典型部件老龄化故障。

从数据看装机时长均值为37689FH,最大为70161FH,最小为18569FH。其中2024年拆换的15个,装机时长均值为41997FH,最小为26578FH。基本上是在14年以上的飞机中发现。有一半都是定检发现更换,溢出率仍然偏高,主要是通过空调性能监控和低进高出报文识别到。

从裂纹的位置看存在典型的起始位置,如下图从左到右,基本上可以认为是一个逐步扩展的过程。也非常容易检查发现和识别。

CMM信息较少看不出明显的问题

由于开焊起点有非常明显的集中性,怀疑为收边的位置,也就是焊缝的起始点。从细节看有弯折堆积点。

焊接时在起点或终点容易开裂主要有以下几方面原因:

热不均匀性

  • 焊接起始段和收尾段的热量分布不均匀,这会导致局部过热和冷却速度差异较大。在焊接起点,的初始焊接热量使母材局部温度迅速升高,由于热量过于集中,可能导致母材的晶粒长大或局部组织发生变化,从而降低材料的韧性,在冷却过程中容易产生裂纹。
  • 而在终点,焊缝的填充量相对较大,热量也相对集中,同样会使焊缝及热影响区的金属在冷却过程中受到的热应力不均匀,进而产生裂纹。

焊接应力集中

  • 在焊接起点,由于焊接电流开始施加在母材上,会产生较大的局部应力。这部分应力在后续的焊接过程中无法得到有效的释放,特别是在焊缝的起点处,容易形成应力集中点,当应力超过材料的抗拉强度时,就会导致开裂。
  • 在焊接终点,焊缝的收缩和冷却过程中,焊缝与母材之间的连接处会受到较大的拉应力。同时,由于焊缝的填充量在终点处相对较大,焊缝的收缩受到母材的约束也更大,从而导致应力集中,容易引起裂纹。

冶金反应的影响

  • 犄接起点的母材与焊丝的初始接触和熔化过程,可能会导致一些杂质元素的局部富集或偏析。例如,在焊接不锈钢时,铬、镍等合金元素的分布可能不均匀,在冷却过程中,这些局部的成分差异会导致晶界处形成脆性相或产生晶间腐蚀,从而增加裂纹的敏感性。
  • 焊接终点处,焊缝的凝固和结晶过程相对较快,这会影响焊缝金属的冶金质量。如果焊缝收尾不当,如收弧过快或填充量不足,会使焊缝的结晶组织变得粗大,晶界处的低熔点共晶和杂质含量相对较高,在焊接应力的作用下,容易产生热裂纹。

焊接工艺因素

  • 焊参数接设置不合理,如焊接电流过大、电弧电压过高或焊接速度过快,都会导致焊缝起点和终点的热量输入过大或过小,影响焊缝的形成和冷却速度。例如,电流过大时,焊缝的熔深和熔宽会增加,但同时也容易导致焊缝的咬边、过热等缺陷,使焊缝起点和终点处的应力集中更加严重。
  • 焊工的操作水平和焊接技巧也会影响焊缝的质量。如果焊工在起弧时不能及时调整好焊接参数和运条方式,或者在收弧时没有采用正确的收尾方法,如多次断弧收尾或添加焊丝等,都可能导致焊缝起点和终点出现未焊透、夹渣、气孔等缺陷,从而引发裂纹。

就此与波音做了沟通。

CFM56-7B的特氟龙材料

油滤检查中对于特氟龙材料的检查要求很高,最多可保留10个循环,并孔探检查前收油池。

目前机队历史上出现过两起因特氟龙材料丢失的换发案例。均来源于3号轴承前封严,特氟龙封严出现较大块的脱落,有堵塞回油管导致无法回油的空停风险。

案例一、B-51*5(73N CFM56-7B)左发ESN 960207 (TSN/CSN 34416/17175)

案例二、B-19*7(738,CFM56-7B)右发 658541。

737内侧主轮轮毂盖裂纹

737NG-FTD-32-07007 & HNA-HNA-25-0888-03C

一、背景

737NG和MAX内侧主轮轮毂盖(P/N: 277A6110-1,子部件-3)是由玻璃纤维增强环氧化合物制成的,由三个安装螺栓固定在主轮上,裂纹通常发生在接耳的螺钉安装孔处或接耳与轮毂盖之间的过渡区域,波音分析了产生裂纹的原因并进行了一些破坏性测试后发现接耳很难完全与轮毂盖分离(原因是实验表明在玻璃纤维裂纹到某一点时会自动停止),故提供了维护建议和针对有裂纹的内侧轮毂盖放行标准。

内侧主轮轮毂保护盖组件(HUBCAP ASSY件号277A6110-1), 包括单独的轮毂盖(HUBCAP件号277A6110-3)、连接器、保护盖和配套紧固件等。

二、波音快速处置建议

1、接耳与轮毂盖过渡区域裂纹

三个接耳与轮毂盖过渡区域有任意数量有裂纹可以正常使用。

2、螺钉安装孔裂纹

三个安装孔中任意数量的安装孔存在裂纹都可以正常使用,只要安装螺钉时将原配的BACW10BP4CD垫片更换为大尺寸的垫片。(如NASM970-4、AN970-4或类似件号的垫片)

3、螺钉安装孔和接耳过渡区域同时有裂纹的情况,也可以在更换垫片后正常使用(参见条目1和2)。

4、过渡区域存在断开完全分离的情况,则该轮毂盖不可以使用。

三、使用提醒

1、波音仅对NG和CL发布有FTD,通过HNA-HNA-25-0888-03C,波音NTO可以运用于MAX飞机上装有P/N: 277A6110-1/-3的轮毂盖。

2、AMM的拆装手册中仅有轮毂盖组件(P/N: 277A6110-1)的拆装步骤。在可否单独更换轮毂盖子部件277A6110-3的问题上,在和波音咨询后,波音NTO可以单独更换。这样可以减少组件中其他完好部件的浪费。在单独更换轮毂盖277A6110-3时需遵循以下两点(来源于图纸):

1)确保两颗安装螺钉NAS6303-2H的磅紧力矩为30-35 in-lbs;

2)参考BAC5108规范打好双股保险丝。

3、厂家在2015年年底之后对原有玻璃纤维材料做了部分改进。并且在这之后交付的新飞机上随机安装的也都是新构型的轮毂盖,新旧构型轮毂盖的件号不变。(感觉效果不明显)

4、图纸要求内侧主轮轮毂盖需要同时带有两个件号(277A6110-1和277A6110-3)的标识。如只有一个,可参考SOPM 20-50-10或者BAC5307进行补充。

Mark the part with the assembly part number via the rubber stamping method described in SOPM 20-50-10. Alternatively, SOPM 20-50-10 permits part marking to be done with permanent ink pens listed in BAC5307 section 5.1.1.2.

737NG/MAX飞机燃油箱接近盖板漏油问题

WTT会议

一、背景

  • 波音公司收到737NG和737MAX运营商报告燃油箱接近面板漏油事件,其中约70%为NG机队报告,约30%为MAX机队报告,部分情况下发现螺母圆顶裂纹。
  • 波音已评估并确定报告的问题不构成飞行安全问题。

二、失效原因

1、盖板松动

  • 由油脂迁移、密封垫劣化或紧固件旋转导致。

2、铸件圆顶开裂

  • 由湿气侵入、紧固件干涉或圆顶中的异物碎片(FOD)引起。

3、燃油密封问题

  • 燃油密封设计研究。

4、螺母保持器安装问题

  • 螺母保持器安装不当可能导致圆顶开裂和紧固件安装不规范。

5、生产安装和机队维护要求

  • 识别基于测试结果的最佳安装实践。
  • 增强控制和要求以在整个生产系统中实施。
  • 执行伦顿工厂研讨会以确保过程一致性。
  • 使生产程序和定期维护程序保持一致。

三、解决措施

1、临时/缓解措施

  • 通过BCS提供临时速度胶带修复选项,具体参见机队团队摘要(FTD)文章。
  • 安装Av-DEC STC密封垫代替波音型号合格证(TC)密封垫。
  • 根据飞机维护手册(AMM)建议,重新扭紧Cor-Ban27L密封垫的紧固件以规范值,并添加注释强调在重新扭紧前必须完全排空燃油箱。
  • 更新AMM任务28-11-11-401、28-11-11-400-802和28-11-31-400 801,提醒运营商避免使用较长夹紧长度的安装螺栓,每次安装燃油箱接近门时更换密封垫,并确保螺母圆顶无异物碎片和污染物。
  • 运营商提供的缓解措施:如水浸入检查、检查并扭矩校验紧固件等。

2、根本原因调查

  • 界面松动:工程团队进行安装测试以稳定界面松动,更新门安装程序,飞行测试计划评估紧固件旋转。
  • 铸件圆顶开裂:工程团队确定所有安装的通用螺栓夹紧长度,环境测试团队进行湿气管理的环境测试。
  • 燃油密封:燃油密封设计研究,协调燃油密封的详细制造、装配和检验过程。
  • 螺母保持器安装:工程团队澄清螺母保持器安装要求。
  • 生产安装和机队维护要求:识别基于测试结果的最佳安装实践,增强控制和要求,执行伦顿工厂研讨会,使生产程序和定期维护程序一致。

3、长期计划

  • 2024年10月开始根本原因调查,2025年2月开始测试活动,2025年6月12日确定根本原因,2025年9月12日完成测试,2025年9月26日选择解决方案,2025年12月发布安装工程(如扭矩、重新扭紧、模式、旋转速度、密封垫准备)和流程更新。
  • 2026年第三季度/第四季度发布详细、装配、燃油密封、密封垫工程更新。

四、时间表

  • Av-DEC认证计划
  • 2025年5月31日完成工程工作陈述。
  • 2025年8月31日举办Av-DEC与波音研讨会。
  • 2025年10月31日向服务通告团队提交协调表。
  • 2025年12月19日启动Av-DEC认证计划。
  • 2026年3月31日向FAA提交认证计划。
  • 2026年5月31日向FAA提交服务通告。
  • 2026年9月30日完成Av-DEC密封垫认证/测试。

五、备件计划

根据当前库存,波音预计现有认证密封垫和门组件的供应充足,能够满足需求。

点评:重点看点在Av-DEC密封垫加入波音IPC。

[ Back To Top ]