大翼防冰和进气道防冰的使用条件差异

来源于网络公众号“ 楚虽三”

2024年6月,有飞机因引气跳开,航路有结冰条件导致了备降事件。因此就备降必要性展开了讨论。

一、大翼防冰和进气道防冰的气源差异

1、发动机整流罩防冰使用引气活门上游的气源,所以关闭引气,亦或引气活门跳开,都不影响发动机整流罩防冰的工作。

2、机翼防冰使用引气活门下游的气源,故而单引气或APU供气状态下,由于引气量不足无法使用机翼防冰系统。这也是为什么《引气跳开检查单》只限制机翼防冰系统,而不限制发动机整流罩防冰的使用。机翼防冰只对机翼前缘内侧的三块缝翼进行加热,最外侧的前缘缝翼以及前缘襟翼是没有加热能力。实拍的视屏显示,最外侧缝翼的积冰是除不掉的。

二、发动机防冰的使用

OAT(在地面)或 TAT(在空中)为 10 摄氏度或更低并且存在下列任何情况时,存在结冰条件:

• 可见湿气[云、能见度 1 英里(1600m)或以下的雾、雨、雪、雨夹雪、冰晶等]存在,或

• 在停机坪、滑行道、或跑道上积留有冰、雪、雪浆或积水。

警告:当 OAT(在地面)或者 TAT(在空中)高于 10 摄氏度,不要使用发动机或机翼防冰。

——《B737机组操作手册》(FCOM 辅助程序 恶劣天气)

发动机防冰操作 — 在地面当存在结冰状况或者预期存在结冰状况时,在两台发动机起动后必须立即选择发动机防冰在 ON 位,并在整个地面操作过程中保持接通。警告:启用发动机防冰之前不能仅靠机身上的目视结冰现象。使用温度和可见湿气作为标准,因为过晚使用发动机防冰可能会造成发动机吸入过量的冰,并导致发动机损害或失效。

警告:当 OAT 高于 10 摄氏度,不要使用发动机防冰。——《B737机组操作手册》(FCOM 辅助程序 恶劣天气)

发动机防冰操作 — 在空中在所有的飞行操作过程中出现或预计出现结冰情况时,都必须接通发动机防冰;但是当温度低于-40 摄氏度 SAT 爬升和巡航期间不要使用发动机防冰。在所有结冰条件下下降之前及下降过程中,包括温度低于-40 摄氏度 SAT 时,都必须接通发动机防冰。在有可能结冰的区域飞行时,进入结冰区之前接通发动机防冰。

警告:启用发动机防冰之前不能仅靠机身上的目视结冰现象。使用温度和可见湿气作为标准,因为过晚使用发动机防冰可能会造成发动机吸入过量的冰,并导致发动机损害或失效。

警告:当 TAT 高于 10 摄氏度,不要使用发动机防冰。

——《B737机组操作手册》(FCOM 辅助程序 恶劣天气)

总结一下:在地面:如果OAT低于10℃,且存在能见度 1 英里(1600m)或以下的雾、雨、雪、雨夹雪、冰晶等或停机坪、滑行道、或跑道上积留有冰、雪、雪浆或积水,则应在发动机起动完成后立即接通发动机整流罩防冰,并保持到起飞后。

在空中(爬升、巡航阶段):如果TAT低于10℃,且SAT高于-40℃,在可见水汽中飞行则应接通发动机整流罩防冰。

在空中(下降阶段):如果TAT低于10℃,且存在可见水汽,不论SAT是否低于-40℃均应接通发动机整流罩防冰。

三、机翼防冰的使用方法

AT(在地面)或 TAT(在空中)为 10 摄氏度或更低并且存在下列任何情况时,存在结冰条件:

• 可见湿气[云、能见度 1 英里(1600m)或以下的雾、雨、雪、雨夹雪、冰晶等]存在,或

• 在停机坪、滑行道、或跑道上积留有冰、雪、雪浆或积水。

警戒:当 OAT(在地面)或者 TAT(在空中)高于 10 摄氏度,不要使用发动机或机翼防冰。

——《B737机组操作手册》(FCOM 辅助程序 恶劣天气)

机翼防冰操作 — 在地面

当存在结冰状况或者预期存在结冰状况时,在发动机起动与起飞之间的整个地面操作过程中,使用机翼防冰,除非根据批准的地面除冰程序,通过施加 II 类或 IV 类防冻液进行保护。

警告:不要使用机翼防冰作为备用的地面除冰/防冰措施。起飞时仍需要仔细检查,以确保机翼、前缘装置、安定面、操纵面或其它关键部件无霜、雪或冰。

——《B737机组操作手册》(FCOM 辅助程序 恶劣天气)

机翼防冰操作 — 空中

当驾驶舱风挡框架、风挡中央柱或风挡雨刷臂上有积冰时,都表明存在结构结冰情况,此时需要接通机翼防冰。

在空中,机翼防冰系统可作为除冰设施或防冰设施。

使用该系统的主要方法用作除冰器,即接通机翼防冰之前先允许积冰。采用本程序可提供最光洁的机翼表面,并使重新结冰的可能性最小,而且推力和燃油的损耗最低。除非有必要在穿越结冰情况下长时间飞行(等待),一般不需要定期除冰。

第二种方法是在积冰之前使用机翼防冰。只在中度或严重的结冰情况下长时间飞行时,如等待,才使用机翼防冰系统作为防冰器。

警戒:当 TAT 高于 10 摄氏度时,不要使用机翼防冰。

警戒:大约 FL350 以上使用机翼防冰可能会造成引气跳开,并且座舱压力可能损失。

总结一下:

在地面:除非机翼表面已经完成了除冰程序且喷涂了II 或 IV 型防冰液,否则接通发动机防冰的同时接通机翼防冰系统。在起飞推力调定后机翼防冰活门关闭,“L/R VAVLE OPEN”灯由暗变明。飞机离地后机翼防冰电门自动跳至OFF位。

在空中:机翼防冰系统仅能对前缘缝翼加热。如果长时间接通机翼防冰系统,在前缘融化的水会流向机翼后部再次冻结,并累积形成“驼峰”破坏翼型。所以除非必须长时间在严重积冰环境飞行,否则禁止长时间接通机翼防冰。

也正是出于对“驼峰积冰”的考虑,发动机防冰和机翼防冰对失速速度的影响时效也是不同的。

那么如何在空中使用“机翼冰”呢?

首先在结冰条件下,如果驾驶舱风挡框架、风挡中央柱或风挡雨刷臂上有明显积冰,则说明机翼应当也开始积冰了。

过往的经验证明,如果B737飞机前风挡出现如下图般的积冰,则机翼也一定存在积冰。

此时先不要接通机翼防冰系统,让水汽均匀的在机翼前缘累积冻结。

当机翼积冰累积到相当厚度,或脱离结冰区后接通机翼防冰电门。前缘积冰会由底层开始融化,然后突然瓦解,并被气流“掀起”带动整片积冰飞脱。

当冰块基本飞脱干净后,立即关闭机翼防冰系统。

小结:

进气道防冰在所有的飞行操作过程中出现或预计出现结冰情况时,都必须接通发动机防冰;但是当温度低于-40 摄氏度 SAT 爬升和巡航期间不要使用发动机防冰。在所有结冰条件下下降之前及下降过程中,包括温度低于-40 摄氏度 SAT 时,都必须接通发动机防冰。在有可能结冰的区域飞行时,进入结冰区之前接通发动机防冰。
大翼防冰当驾驶舱风挡框架、风挡中央柱或风挡雨刷臂上有积冰时,都表明存在结构结冰情况,此时需要接通机翼防冰。积冰之前使用机翼防冰。只在中度或严重的结冰情况下长时间飞行时,如等待,才使用机翼防冰系统作为防冰器。

附FCOM:

1,发动机防冰的使用–地面

2,发动机防冰的使用–空中

3,机翼防冰的使用–地面

4,机翼防冰的使用–空中

737MAX的LRD系统引起客舱烟雾

背景:2023年有两起LEAP-1B发动机的鸟击事件,导致了发动机空停,并导致了严重的叶片损伤、客舱浓烟和EGT警告。

LRD系统(Load Reduction Device)
在风扇叶片破损或风扇严重损坏期间,会产生严重的风扇旋转不平衡,这种不平衡必须由轴承、轴承支架、风扇框架和吊架来支撑

  • 如果增加这些支撑组件的尺寸以能支撑此负载,会增加发动机重量
  • 减载装置 (LRD) 是一种机械弱化部件,可将风扇转子与风扇支撑系统分离,从而减少传递到发动机结构的负载,以防万一风扇叶片破损并能保持更轻的发动机设计
  • LEAP-1B 包含两个 LRD 组件:
    – 在 #1/#2 轴承支架上
    – 在 #2 轴承基座上
  • LRD激活 后,风扇转子寻找新的旋转中心。风扇机匣和耐摩层调整大小,以允许风扇叶片摩擦耐摩层和沟槽填充物并让转速降低以最大限度地减少硬摩擦影响风扇机匣结构的可能性

减载装置LRD可优化发动机设计并减轻发动机重量,从而让发动机更高效

LRD 激活后通过在 #1/#2 轴承支架的后法兰和风扇框架之间创造间隙来打开 A收油池,这会导致A收油池中的滑油泄漏到气流通道中,驾驶舱和客舱中会有烟雾(Smoke/fume)。

在上述的2起鸟击案例中,在LRD激活后,都发生了烟雾的时间,A-SUMP的油流到通道中。

波音发布了Flight Crew Operations Manual Bulletin (OMB),向机组通报当发动机严重损伤的时候,客舱可能导致的结果。波音还会发布FTD对该类事件的调查进展做说明。

2024年11月,波音更新MOM-MOM-24-0605-01更新

737 MAX FCOM/QRH, releasing now, includes enhancements to the relevant systems descriptions and Non-Normal Checklists.

PSU电磁锁销子伸出导致面板脱落

ISE-25-19-28529

2024年6月,B-57X9反映42排ABC座位的PSU氧气面罩小盖板脱落。

经检查发现电磁阀顶针凸出,导致内部机械挂钩偏移,重新复位后正常,测试氧气面罩盖板固定正常。

一旦作动器电磁线圈通电后,解锁作动器顶针,在弹簧力的作用下作动器内的顶针伸出,推动旋转手柄(LEVER),旋转手柄顶着可旋转锁钩条,可旋转锁钩条克服弹簧力旋转,锁钩与盖板边缘脱离。盖板在重力作用下绕另一端旋转打开,氧气面罩脱落。

正常情况下电磁线圈是不会通电的,目前分析是初始装配问题,在震动过程中顶针脱出。

FIX中DAL提出了一种方法,来识别安装不到位,或者在震动中容易脱落的隐形缺陷,还是有一定的借鉴意义的。

DAL认为非指令驱动是由振动引起的,并通过测试发现,与事故相关的致动器往往在比新装置低得多的电压下释放。这支持了柱塞在致动器内的保持力会随着时间的推移而降低的理论。假设释放销与弹簧加载柱塞上的机加工边缘相连,由电磁阀控制-所谓的“保持力”与克服它所需的电压成比例。因此,那些在较低电压下释放的致动器也更容易通过振动触发。

737MAX发动机进气道腐蚀鼓包

HNA-FUZ-24-0114-01C

2024年6月,B-20XC飞机检查发现左发进气道6点钟位置有多处鼓包(The FH/FC of the inlet cowl is 4727FH/2595FC),核实手册不允许有分层现象,向厂家申请偏离未果,更换进气道。

波音对本案的说明如下:

由于潜在的发动机进气道防冰过热风险,对超出SRM允许范围的维修,波音并没有数据支撑其符合FAA的要求和临时运行批复。在进行超出SRM允许范围的维修之前,必须解决由于发动机防冰潜在过热条件而在进气结构上发现的现有不合规问题。波音公司目前没有能够针对参考/a/消息中指出的进气道损坏进行临时或永久维修。

背景原因:

一、厂家文件说明

波音737MAX-FTD-71-23001提到:在一定的飞行参数条件下(如:空速、环境温度、N1转速),发动机防冰气源可能由4级引气切换为10级引气。波音认为10级引气温度超出了进气道复合材料内层的结构设计上限,如果在干燥条件下开启发动机防冰可能导致进气道结构过热,造成复合材料的进气道内层消音板性能衰退,甚至可能造成进气道或者风扇整流罩从发动机脱落。为此,波音改版了AFM和MEL,FAA也下发了相应的FAA AD2023-15-05,具体要求如下。

(1).  机组操作方面:在空中不结冰的情况下,不允许使用发动机防冰系统发动机防冰活门失效在开位时不允许放行。 737MAX机队已修改AFM,要求在飞行中不在实际或预计结冰条件下,不要使用发动机防冰系统。

(2).  飞机维护方面:发动机防冰活门失效在开位时不允许放行。我司已修改MEL30-21-01B和 MEL30-21-03B,明确这两个项目失效不可放行。

由于波音和FAA是在2023年中才发布了以上措施,分析B-207C左发进气道鼓包的原因可能是在AFM改版前,机组在干燥条件下使用过发动机防冰系统,进气道内层消音板在长期的高温状态下运行,性能逐渐衰退并出现鼓包。

据悉,国航也在近期有一台发动机因此而停场待料。

二、对比分析

1、材料

737MAX飞机发动机进气道此处为复合材料

737NG飞机发动机进气道此处为铝合金。

2、根据波音2023年8月22日的737 MAX Out-Of-Sequence (OOS) Call会议材料,对于737MAX飞机,“在特定的高度、空速、TAT温度、发动机N1转速”的组合下,存在EAI系统超温导致进气道复材降级损坏,最终导致部件脱落(PDA)风险。对于737MAX飞机,发动机防冰气源为发动机4级或10级压气机的热引气。引气通过发动机防冰活门进入进气道前缘起到防冰作用,最终通过进气道下部的排气口排出机外。

3、机组提醒

FCOM Bulletin, TBC-33R1对进气口整流罩的损坏风险已做出提醒。

FCOM的“发动机防冰的使用-在空中”也明确了“不要在全温高于10摄氏度时使用发动机防冰”的要求。

波音正在评估最终的措施,预计到2026年2季度发布改进措施。

发动机推力方式显示A/T LIM

来自于网络公众号

2023年7月,一架NG飞机起飞后不久机组反馈起飞爬升过程中发动机推力方式显示A/T LIM,CDU上N1限制值和性能数据消失,后续航班过程中推力方式一直显示A/T LIM,下降期间,ND和CDU便签行上显示FMC DISAGREE信息持续约10分钟。

飞机落地后机组反馈空中接通发动机防冰时,CDU便签行出现TAI ON ABOVE 10 DEGREES C信息,但上DU显示的TAT数值小于10°C。
地面查看TAT指示27°C,进行FMCS自检正常,ADIRS自检正常,A/T自检当前正常,EEC自检有代码73-31711、73-31712 左右惯导的TAT数据不一致。

进入EEC BITE INPUT MONITORING页面发现给2号惯导的TAT数据错误。

尝试复位TAT跳开关、惯导跳开关均无效,左右对串惯导故障不转移。
根据故障现象和测试结果基本上可以判断为TAT内部的2号感温元件故障导致测温不准。但由于当地无航材,在等待航材的过程中,又测量了一下TAT内部的两个感温元件的电阻,1号感温元件电阻549.9欧,2号感温元件电阻533.5欧。参考电阻曲线,环境温度27°C对应的电阻标准约为550欧

后续航材到件后更换了TAT,测试均正常。

背景知识:

1、推力方式显示

发动机推力方式正常为绿色,当变为A/T LIM时,显示为白色,且周围有白框。

1)—推力方式显示
N1 限制基准是现用的 N1 限制,既用于自动油门又用于人工推力控制。
N1 限制基准也可由 N1 游标来显示,此时 N1 调定控制处于自动位置。
N1 限制基准通常是由 FMC 计算的。

推力方式显示如下(不同构型的飞机推力方式显示不完全一致):

  • TO — 起飞
  • TO 1 – 减功率起飞 1
  • TO 2 – 减功率起飞 2
  • D-TO – 假设温度减推力起飞
  • D-TO 1 – 减功率 1 结合假设温度减推力起飞
  • D-TO 2 – 减功率 2 结合假设温度减推力起飞
  • CLB — 爬升
  • CLB 1 – 减功率爬升 1
  • CLB 2 – 减功率爬升 2
  • CRZ — 巡航
  • G/A — 复飞
  • CON — 连续
  • — — FMC 未计算推力限制

2)自动油门限制 (A/T LIM) 显示
亮 (白色) — FMC 没有向 A/T 系统提供 N1 限制值。A/T 正在使用来自相应 EEC 的降级的 N1 推力限制。
灯亮时代替推力方式显示信号牌。

2、FMC性能计算

FMC使用以下数据进行性能计算:

  • 大气数据
  • 巡航高度
  • 成本指数
  • 燃油重量
  • 发动机引气传感器
  • 模型/发动机数据库MEDB

其中大气数据主要包含来自ADIRU的TAT、高度、空速。

  • TAT用于计算推力限制
  • 高度用于计算速度、推力目标和推力限制
  • 空速用于计算DFCS、A/T指令

正常情况下,FMC的源选择电门放在NORMAL位,此时两部FMC同时工作,包括性能计算等功能。两部FMC会实时比较以下静态数据:

  • 飞行计划数据
  • 性能数据
  • 起飞基准页面数据
  • 进近基准页面数据
  • N1限制页面数据
  • 可转换离散数据

发动机防冰电门分别给FMC、DEU发送电门位置信号,FMC据此判断发动机防冰是否开启。

FMC接收来自惯导的TAT数据,在TAT探测到的温度大于10°C的情况下开启发动机防冰时,FMC会通过CDU的便签行显示TAI ON ABOVE 10 DEGREES C。

案例分享:

1、2024年天津航后机组反馈爬升穿云期间TAT温度显示由10度变为0度,并出现A/T LIM信息,持续约20秒,出云后恢复正常。航后TAT加温测试正常,ADIRS BITE测试正常无代码,EEC BITE测试输入监控页面查看TAT数据正常,测量两个探测元件电阻565、563欧(参考电阻曲线,环境温度32°C对应的电阻约为560欧),加温元件电阻30欧(标准12~30欧),更换TAT探头,测试正常。

2、2024年6月,一架NG飞机过站机组反馈起飞按压TO/GA电门后双侧飞行指引和起飞模式信息消失,后续切换俯仰、横滚模式后恢复正常。地面DFCS自检A通道有历史代码:22-11210 FGN FAILS TO ENT TOGA,B通道有历史代码:22-11209 FGN FAILS TO ENT TOGA、22-11734 TAS INV。ADIRS BITE测试发现2号惯导历史09段有代码:34-21022 TAT PROBE SIGNAL FAIL。

小结

当TAT探头的一个或两个感温元件失效时,都可能会引发一系列的故障现象,可能出现的故障现象有:

  • TAT指示空白
  • SAT指示空白
  • TAS指示空白
  • 风速和风向显示空白(只有TAS大于100节时才显示风速、风向,否则显示短横线)
  • 出现白色A/T LIM信息(FMC N1限制值的计算需要使用TAT数据,TAT无效导致FMC N1数据无效,FCC A使用EEC降级的N1限制值)
  • N1 limit数据丢失(同上)
  • VNAV断开等
[ Back To Top ]